971 research outputs found

    Epidemiology and Molecular Relationships of Cryptosporidium spp. in People, Primates, and Livestock from Western Uganda

    Get PDF
    Cryptosporidium is a common gastrointestinal parasite known for its zoonotic potential. We found Cryptosporidium in 32.4% of people, 11.1% of non-human primates, and 2.2% of livestock in the region of Kibale National Park, Uganda. In people, infection rates were higher in one community than elsewhere, and fetching water from an open water source increased the probability of infection. Phylogenetic analyses identified clusters of Cryptosporidium with mixed host origins in people, primates, and livestock outside the park; however, parasites from primates inside the park were genetically divergent, suggesting a separate sylvatic transmission cycle. Infection was not associated with clinical disease in people, even in the case of co-infection with the gastrointestinal parasite Giardia duodenalis. Parasites such as Cryptosporidium may be maintained through frequent cross-species transmission in tropical settings where people, livestock, and wildlife interact frequently, but the parasite may undergo more host-specific transmission where such interactions do not occur. Persistent low-level shedding and immunity may limit the clinical effects of infection in such settings

    Quranic Topic Modelling Using Paragraph Vectors

    Get PDF
    The Quran is known for its linguistic and spiritual value. It comprises knowledge and topics that govern different aspects of people’s life. Acquiring and encoding this knowledge is not a trivial task due to the overlapping of meanings over its documents and passages. Analysing a text like the Quran requires learning approaches that go beyond word level to achieve sentence level representation. Thus, in this work, we follow a deep learning approach: paragraph vector to learn an informative representation of Quranic Verses. We use a recent breakthrough in embeddings that maps the passages of the Quran to vector representation that preserves more semantic and syntactic information. These vectors can be used as inputs for machine learning models, and leveraged for the topic analysis. Moreover, we evaluated the derived clusters of related verses against a tagged corpus, to add more significance to our conclusions. Using the paragraph vectors model, we managed to generate a document embedding space that model and explain word distribution in the Holy Quran. The dimensions in the space represent the semantic structure in the data and ultimately help to identify main topics and concepts in the text

    A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

    Get PDF
    The pallido-recipient thalamus transmits information from the basal ganglia to the cortex and is critical for motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the basal ganglia, but the role of nonpallidal inputs, such as excitatory inputs from cortex, remains unclear. We simultaneously recorded from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a basal ganglia–recipient thalamic nucleus that is necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor cortical nucleus that is also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals that are important for exploratory behavior and learning.National Institutes of Health (U.S.) (Grant R01DC009183)National Institutes of Health (U.S.) (Grant K99NS067062)Damon Runyon Cancer Research Foundation (Postdoctoral Fellowship)Charles A. King Trust (Postdoctoral Fellowship

    How Can Home Care Patients and Their Caregivers Better Manage Fall Risks by Leveraging Information Technology?

    Get PDF
    Objectives: From the perspectives of home care patients and caregivers, this study aimed to (a) identify the challenges for better fall-risk management during home care episodes and (b) explore the opportunities for them to leverage health information technology (IT) solutions to improve fall-risk management during home care episodes. Methods: Twelve in-depth semistructured interviews with the patients and caregivers were conducted within a descriptive single case study design in 1 home health agency (HHA) in the mid-Atlantic region of the United States. Results: Patients and caregivers faced challenges to manage fall risks such as unmanaged expectations, deteriorating cognitive abilities, and poor care coordination between the HHA and physician practices. Opportunities to leverage health IT solutions included patient portals, telehealth, and medication reminder apps on smartphones. Conclusion: Effectively leveraging health IT could further empower patients and caregivers to reduce fall risks by acquiring the necessary information and following clinical advice and recommendations. The HHAs could improve the quality of care by adopting IT solutions that show more promise of improving the experiences of patients and caregivers in fall-risk management

    The Spread of Fecally Transmitted Parasites in Socially-Structured Populations

    Get PDF
    Mammals are infected by a wide array of gastrointestinal parasites, including parasites that also infect humans and domesticated animals. Many of these parasites are acquired through contact with infectious stages present in soil, feces or vegetation, suggesting that ranging behavior will have a major impact on their spread. We developed an individual-based spatial simulation model to investigate how range use intensity, home range overlap, and defecation rate impact the spread of fecally transmitted parasites in a population composed of social groups (i.e., a socially structured population). We also investigated the effects of epidemiological parameters involving host and parasite mortality rates, transmissibility, disease–related mortality, and group size. The model was spatially explicit and involved the spillover of a gastrointestinal parasite from a reservoir population along the edge of a simulated reserve, which was designed to mimic the introduction pathogens into protected areas. Animals ranged randomly within a “core” area, with biased movement toward the range center when outside the core. We systematically varied model parameters using a Latin hypercube sampling design. Analyses of simulation output revealed a strong positive association between range use intensity and the prevalence of infection. Moreover, the effects of range use intensity were similar in magnitude to effects of group size, mortality rates, and the per-contact probability of transmission. Defecation rate covaried positively with gastrointestinal parasite prevalence. Greater home range overlap had no positive effects on prevalence, with a smaller core resulting in less range overlap yet more intensive use of the home range and higher prevalence. Collectively, our results reveal that parasites with fecal-oral transmission spread effectively in socially structured populations. Future application should focus on parameterizing the model with empirically derived ranging behavior for different species or populations and data on transmission characteristics of different infectious organisms

    Deciphering the Catalytic Machinery in 30S Ribosome Assembly GTPase YqeH

    Get PDF
    YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a catalytic mechanism, different from the Ras-like proteins.MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only approximately 25% sequence identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too, uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular permutation in YqeH. Interestingly, when compared with MnmE, helix alpha2 that presents Asp-57 is relocated towards the N-terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports this inference.An uncommon means to achieve GTP hydrolysis utilizing a K(+) ion has so far been demonstrated only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both, mechanistic differences may arise based on the way they are deployed. It appears that K(+) driven mechanism emerges as an alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases

    Estimation of Fish Biomass Using Environmental DNA

    Get PDF
    Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems
    corecore