325 research outputs found
The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package
The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project
A pharmacy too far? Equity and spatial distribution of outcomes in the delivery of subsidized artemisinin-based combination therapies through private drug shops
BACKGROUND: Millions of individuals with malaria-like fevers purchase drugs from private retailers, but artemisinin-based combination therapies (ACTs), the only effective treatment in regions with high levels of resistance to older drugs, are rarely obtained through these outlets due to their relatively high cost. To encourage scale up of ACTs, the Affordable Medicines Facility--malaria is being launched to subsidize their price. The Government of Tanzania and the Clinton Foundation piloted this subsidized distribution model in two Tanzanian districts to examine concerns about whether the intervention will successfully reach poor, rural communities. METHODS: Stocking of ACTs and other antimalarial drugs in all retail shops was observed at baseline and in four subsequent surveys over 15 months. Exit interviews were conducted with antimalarial drug customers during each survey period. All shops and facilities were georeferenced, and variables related to population density and proximity to distribution hubs, roads, and other facilities were calculated. To understand the equity of impact, shops stocking ACTs and consumers buying them were compared to those that did not, according to geographic and socioeconomic variables. Patterning in ACT stocking and sales was evaluated against that of other common antimalarials to identify factors that may have impacted access. Qualitative data were used to assess motivations underlying stocking, distribution, and buying disparities. RESULTS: Results indicated that although total ACT purchases rose from negligible levels to nearly half of total antimalarial sales over the course of the pilot, considerable geographic variation in stocking and sales persisted and was related to a variety of socio-spatial factors; ACTs were stocked more often in shops located closer to district towns (p<0.01) and major roads (p<0.01) and frequented by individuals of higher socioeconomic status (p<0.01). However, other antimalarial drugs displayed similar patterning, indicating the existence of underlying disparities in access to antimalarial drugs in general in these districts. CONCLUSIONS: As this subsidy model is scaled up across multiple countries, these results confirm the potential for increased ACT usage but suggest that additional efforts to increase access in remote areas will be needed for the scale-up to have equitable impact. TRIAL REGISTRATION: Current Controlled Trials ISRCTN39125414
Identification and prioritization of critical success factors in faith-based and non-faith-based organizationsβ humanitarian supply chain
In the last few decades, an exponential increase in the number of disasters, and their complexity has been reported, which ultimately put much pressure on relief organizations. These organizations cannot usually respond to the disaster on their own, and therefore, all actors involved in relief efforts should have end-to-end synchronization in order to provide relief effectively and efficiently. Consequently, to smoothen the flow of relief operation, a shared understanding of critical success factors in humanitarian supply chain serves as a pre-requisite for successful relief operation. Therefore, any member of the humanitarian supply chain might disrupt this synchronization by neglecting one or several of these critical success factors. However, in this study, we try to investigate how faith-based and non-faith-based relief organizations treat these critical success factors. Moreover, we also try to identify any differences between Islamic and Christian relief organizations in identifying and prioritizing these factors. To achieve the objective of this study, we used a two-stage approach; in the first stage, we collected the critical success factors from existing humanitarian literature. Whereas, in the second stage, using an online questionnaire, we collected data on the importance of selected factors from humanitarian relief organizations from around the world in collaboration with World Association of Non-Governmental Organizations (WANGO). Later, responses were analyzed to answer the research questions using non-parametric Binomial and Wilcoxon Rank-Sum tests. Test results indicate that for RQ1, two but all factors are significant for successful relief operation. For RQ2, we found significant differences for some CSF among faith-based and non-faith-based relief organizations. Similarly for RQ3, we found significant differences for some CSF among Islamic and Christian relief organizations
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factorsβthe summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57Β·8% (95% CI 56Β·6β58Β·8) of global deaths and 41Β·2% (39Β·8β42Β·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211Β·8 million [192Β·7 million to 231Β·1 million] global DALYs), smoking (148Β·6 million [134Β·2 million to 163Β·1 million]), high fasting plasma glucose (143Β·1 million [125Β·1 million to 163Β·5 million]), high BMI (120Β·1 million [83Β·8 million to 158Β·4 million]), childhood undernutrition (113Β·3 million [103Β·9 million to 123Β·4 million]), ambient particulate matter (103Β·1 million [90Β·8 million to 115Β·1 million]), high total cholesterol (88Β·7 million [74Β·6 million to 105Β·7 million]), household air pollution (85Β·6 million [66Β·7 million to 106Β·1 million]), alcohol use (85Β·0 million [77Β·2 million to 93Β·0 million]), and diets high in sodium (83Β·0 million [49Β·3 million to 127Β·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
Retail sector distribution chains for malaria treatment in the developing world: a review of the literature
BACKGROUND: In many low-income countries, the retail sector plays an important role in the treatment of malaria and is increasingly being considered as a channel for improving medicine availability. Retailers are the last link in a distribution chain and their supply sources are likely to have an important influence on the availability, quality and price of malaria treatment. This article presents the findings of a systematic literature review on the retail sector distribution chain for malaria treatment in low and middle-income countries. METHODS: Publication databases were searched using key terms relevant to the distribution chain serving all types of anti-malarial retailers. Organizations involved in malaria treatment and distribution chain related activities were contacted to identify unpublished studies. RESULTS: A total of 32 references distributed across 12 developing countries were identified. The distribution chain had a pyramid shape with numerous suppliers at the bottom and fewer at the top. The chain supplying rural and less-formal outlets was made of more levels than that serving urban and more formal outlets. Wholesale markets tended to be relatively concentrated, especially at the top of the chain where few importers accounted for most of the anti-malarial volumes sold. Wholesale price mark-ups varied across chain levels, ranging from 27% to 99% at the top of the chain, 8% at intermediate level (one study only) and 2% to 67% at the level supplying retailers directly. Retail mark-ups tended to be higher, and varied across outlet types, ranging from 3% to 566% in pharmacies, 29% to 669% in drug shops and 100% to 233% in general shops. Information on pricing determinants was very limited. CONCLUSIONS: Evidence on the distribution chain for retail sector malaria treatment was mainly descriptive and lacked representative data on a national scale. These are important limitations in the advent of the Affordable Medicine Facility for Malaria, which aims to increase consumer access to artemisinin-based combination therapy (ACT), through a subsidy introduced at the top of the distribution chain. This review calls for rigorous distribution chain analysis, notably on the factors that influence ACT availability and prices in order to contribute to efforts towards improved access to effective malaria treatment
Genetic Evidence for Inhibition of Bacterial Division Protein FtsZ by Berberine
Background: Berberine is a plant alkaloid that is widely used as an anti-infective in traditional medicine. Escherichia coli exposed to berberine form filaments, suggesting an antibacterial mechanism that involves inhibition of cell division. Berberine is a DNA ligand and may induce filamentation through induction of the SOS response. Also, there is biochemical evidence for berberine inhibition of the cell division protein FtsZ. Here we aimed to assess possible berberine mechanism(s) of action in growing bacteria using genetics tools. Methodology/Principal Findings: First, we tested whether berberine inhibits bacterial growth through DNA damage and induction of the SOS response. The SOS response induced by berberine was much lower compared to that induced by mitomycin C in an SOS response reporter strain. Also, cell filamentation was observed in an SOS-negative E. coli strain. To test whether berberine inhibits FtsZ, we assessed its effects on formation of the cell division Z-rings, and observed a dramatic reduction in Z-rings in the presence of berberine. We next used two different strategies for RNA silencing of ftsZ and both resulted in sensitisation of bacteria to berberine, visible as a drop in the Minimum Inhibitory Concentration (MIC). Furthermore, Fractional Inhibitory Concentration Indices (FICIs) showed a high level of synergy between ftsZ silencing and berberine treatment (FICI values of 0.23 and 0.25 for peptide nucleic acid- and expressed antisense RNA-based silencing of ftsZ, respectively). Finally, over-expression of ftsZ led to a mild rescue effect in berberine-treated cells
Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal
<p>Abstract</p> <p>Background</p> <p>By revealing historical and present plant use, ethnobotany contributes to drug discovery and socioeconomic development. Nepal is a natural storehouse of medicinal plants. Although several ethnobotanical studies were conducted in the country, many areas remain unexplored. Furthermore, few studies have compared indigenous plant use with reported phytochemical and pharmacological properties.</p> <p>Methods</p> <p>Ethnopharmacological data was collected in the Rasuwa district of Central Nepal by conducting interviews and focus group discussions with local people. The informant consensus factor (F<sub>IC</sub>) was calculated in order to estimate use variability of medicinal plants. Bio-efficacy was assessed by comparing indigenous plant use with phytochemical and pharmacological properties determined from a review of the available literature. Criteria were used to identify high priority medicinal plant species.</p> <p>Results</p> <p>A total of 60 medicinal formulations from 56 plant species were documented. Medicinal plants were used to treat various diseases and disorders, with the highest number of species being used for gastro-intestinal problems, followed by fever and headache. Herbs were the primary source of medicinal plants (57% of the species), followed by trees (23%). The average F<sub>IC</sub> value for all ailment categories was 0.82, indicating a high level of informant agreement compared to similar studies conducted elsewhere. High F<sub>IC </sub>values were obtained for ophthalmological problems, tooth ache, kidney problems, and menstrual disorders, indicating that the species traditionally used to treat these ailments are worth searching for bioactive compounds: <it>Astilbe rivularis</it>, <it>Berberis asiatica</it>, <it>Hippophae salicifolia, Juniperus recurva</it>, and <it>Swertia multicaulis</it>. A 90% correspondence was found between local plant use and reported plant chemical composition and pharmacological properties for the 30 species for which information was available. Sixteen medicinal plants were ranked as priority species, 13 of which having also been prioritized in a country-wide governmental classification.</p> <p>Conclusions</p> <p>The <it>Tamang </it>people possess rich ethnopharmacological knowledge. This study allowed to identify many high value and high priority medicinal plant species, indicating high potential for economic development through sustainable collection and trade.</p
High Resolution Methylome Map of Rat Indicates Role of Intragenic DNA Methylation in Identification of Coding Region
DNA methylation is crucial for gene regulation and maintenance of genomic stability. Rat has been a key model system in understanding mammalian systemic physiology, however detailed rat methylome remains uncharacterized till date. Here, we present the first high resolution methylome of rat liver generated using Methylated DNA immunoprecipitation and high throughput sequencing (MeDIP-Seq) approach. We observed that within the DNA/RNA repeat elements, simple repeats harbor the highest degree of methylation. Promoter hypomethylation and exon hypermethylation were common features in both RefSeq genes and expressed genes (as evaluated by proteomic approach). We also found that although CpG islands were generally hypomethylated, about 6% of them were methylated and a large proportion (37%) of methylated islands fell within the exons. Notably, we obeserved significant differences in methylation of terminal exons (UTRs); methylation being more pronounced in coding/partially coding exons compared to the non-coding exons. Further, events like alternate exon splicing (cassette exon) and intron retentions were marked by DNA methylation and these regions are retained in the final transcript. Thus, we suggest that DNA methylation could play a crucial role in marking coding regions thereby regulating alternative splicing. Apart from generating the first high resolution methylome map of rat liver tissue, the present study provides several critical insights into methylome organization and extends our understanding of interplay between epigenome, gene expression and genome stability
Transcriptional Regulation of BMP2 Expression by the PTH-CREB Signaling Pathway in Osteoblasts
Intermittent application of parathyroid hormone (PTH) has well established anabolic effects on bone mass in rodents and humans. Although transcriptional mechanisms responsible for these effects are not fully understood, it is recognized that transcriptional factor cAMP response element binding protein (CREB) mediates PTH signaling in osteoblasts, and that there is a communication between the PTH-CREB pathway and the BMP2 signaling pathway, which is important for osteoblast differentiation and bone formations. These findings, in conjunction with putative cAMP response elements (CREs) in the BMP2 promoter, led us to hypothesize that the PTH-CREB pathway could be a positive regulator of BMP2 transcription in osteoblasts. To test this hypothesis, we first demonstrated that PTH signaling activated CREB by phosphorylation in osteoblasts, and that both PTH and CREB were capable of promoting osteoblastic differentiation of primary mouse osteoblast cells and multiple rodent osteoblast cell lines. Importantly, we found that the PTH-CREB signaling pathway functioned as an effective activator of BMP2 expression, as pharmacologic and genetic modulation of PTH-CREB activity significantly affected BMP2 expression levels in these cells. Lastly, through multiple promoter assays, including promoter reporter deletion, mutation, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA), we identified a specific CRE in the BMP2 promoter which is responsible for CREB transactivation of the BMP2 gene in osteoblasts. Together, these results demonstrate that the anabolic function of PTH signaling in bone is mediated, at least in part, by CREB transactivation of BMP2 expression in osteoblasts
Interferon-Ξ³ Regulates the Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3 Dioxygenase (IDO)
The kynurenine pathway (KP) of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs) express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO) and IDO2, that it is highly regulated by type I (IFN-Ξ²) and II interferons (IFN-Ξ³), and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-Ξ³ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation
- β¦