20 research outputs found

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer

    Get PDF
    ESA’s Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 Όm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet

    Jupiter science Enabled by ESA's Jupiter Icy Moons Explorer

    Get PDF
    ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 Όm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet

    Three-dimensional structure of thermal waves in Venus’ mesosphere from ground-based observations

    No full text
    High spectral resolution observations of Venus were obtained with the TEXES instrument at NASA’s Infrared Telescope Facility. These observations focus on a CO2 absorption feature at 791.4 cm-1 as the shape of this absorption feature can be used to retrieve the vertical temperature profile in Venus’ mesosphere. By scan-mapping the planet, we are able to build up three-dimensional temperature maps of Venus’ atmosphere, covering one Earth-facing hemisphere and an altitude range of 60–83 km. A temperature map from February 12, 2019 clearly shows the three-dimensional structure of a planetary-scale thermal wave. This wave pattern appears strongest in the mid-latitudes of Venus, has a zonal wavenumber of 2–4 and the wave fronts tilt eastward with altitude at an angle of 8–15 degrees per km. This is consistent with a thermal tide propagating upwards from Venus’ upper cloud decks. Ground-based observations provide the opportunity to study Venus’ temperature structure on an ongoing basis

    Jupiter's auroral-related stratospheric heating and chemistry I: Analysis of Voyager-IRIS and Cassini-CIRS spectra

    No full text
    Auroral processes are evident in Jupiter's polar atmosphere over a large range in wavelength (X-ray to radio). In particular, previous observations in the mid-infrared (5-15 ÎŒm) have shown enhanced emission from CH4, C2H2 and C2H4 and further stratospheric hydrocarbon species in spatial regions coincident with auroral processes observed at other wavelengths. These regions, described as auroral-related hotspots, observed at approximately 160°W to 200°W (System III) at high-northern latitudes and 330°W to 80°W at high-southern latitudes, indicate that auroral processes modify the thermal structure and composition of the neutral atmosphere. However, previous studies have struggled to differentiate whether the aforementioned enhanced emission is a result of either temperature changes and/or changes in the concentration of the emitting species. We attempt to address this degeneracy in this work by performing a retrieval analysis of Voyager 1-IRIS spectra (acquired in 1979) and Cassini-CIRS spectra (acquired in 2000/2001) of Jupiter. Retrievals of the vertical temperature profile in Cassini-CIRS spectra covering the auroral-related hotspots indicate the presence of two discrete vertical regions of heating at the 1-mbar level and at pressures of 10-ÎŒbar and lower. For example, in Cassini-CIRS 2.5 cm-1 'MIRMAP' spectra at 70°N (planetographic) 180°W (centred on the auroral oval), we find temperatures at the 1-mbar level and 10-ÎŒbar levels are enhanced by 15.3 ± 5.2 K and 29.6 ± 15.0 K respectively, in comparison to results at 70°N, 60°W in the same dataset. High temperatures at 10 ÎŒbar and lower pressures were considered indicative of joule heating, ion and/or electron precipitation, ion-drag and energy released form exothermic ion-chemistry. However, we conclude that the heating at the 1-mbar level is the result of either a layer of aurorally-produced haze particles, which are heated by incident sunlight and/or adiabatic heating by downwelling within the auroral hot-spot region. The former mechanism would be consistent with the vertical profiles of polycyclic aromatic hydrocarbons (PAHs) and haze particles predicted in auroral-chemistry models (Wong et al., 2000; 2003). Retrievals of C2H2 and C2H6 were also performed and indicate C2H2 is enriched but C2H6 is depleted in auroral regions relative to quiescent regions. For example, using CIRS ÎŽÎœ ˜= 2.5 cm-1 spectra, we determined that C2H2 at 0.98 mbar increases by 175.3 ± 89.3 ppbv while C2H6 at 4.7 mbar decreases by 0.86 ± 0.59 ppmv in comparing results at 70°N, 180°W and 70°N, 60°W. These results represent a mean of values retrieved from different initial assumptions and thus we believe they are robust. We believe these contrasts in C2H2 and C2H6 between auroral and quiescent regions can be explained by a coupling of auroral-driven chemistry and horizontal advection. Ion-neutral and electron recombination chemistry in the auroral region enriches all C2 hydrocarbons but in particular, the unsaturated C2H2 and C2H4 hydrocarbons. Once advected outside of the auroral region, the unsaturated C2 hydrocarbons are converted into C2H6 by neutral photochemistry thereby enriching C2H6 in quiescent regions, which gives the impression it is depleted inside the auroral region

    Jupiter's auroral-related stratospheric heating and chemistry I: Analysis of Voyager-IRIS and Cassini-CIRS spectra

    No full text
    Auroral processes are evident in Jupiter's polar atmosphere over a large range in wavelength (X-ray to radio). In particular, previous observations in the mid-infrared (5-15 ÎŒm) have shown enhanced emission from CH4, C2H2 and C2H4 and further stratospheric hydrocarbon species in spatial regions coincident with auroral processes observed at other wavelengths. These regions, described as auroral-related hotspots, observed at approximately 160°W to 200°W (System III) at high-northern latitudes and 330°W to 80°W at high-southern latitudes, indicate that auroral processes modify the thermal structure and composition of the neutral atmosphere. However, previous studies have struggled to differentiate whether the aforementioned enhanced emission is a result of either temperature changes and/or changes in the concentration of the emitting species. We attempt to address this degeneracy in this work by performing a retrieval analysis of Voyager 1-IRIS spectra (acquired in 1979) and Cassini-CIRS spectra (acquired in 2000/2001) of Jupiter. Retrievals of the vertical temperature profile in Cassini-CIRS spectra covering the auroral-related hotspots indicate the presence of two discrete vertical regions of heating at the 1-mbar level and at pressures of 10-ÎŒbar and lower. For example, in Cassini-CIRS 2.5 cm-1 'MIRMAP' spectra at 70°N (planetographic) 180°W (centred on the auroral oval), we find temperatures at the 1-mbar level and 10-ÎŒbar levels are enhanced by 15.3 ± 5.2 K and 29.6 ± 15.0 K respectively, in comparison to results at 70°N, 60°W in the same dataset. High temperatures at 10 ÎŒbar and lower pressures were considered indicative of joule heating, ion and/or electron precipitation, ion-drag and energy released form exothermic ion-chemistry. However, we conclude that the heating at the 1-mbar level is the result of either a layer of aurorally-produced haze particles, which are heated by incident sunlight and/or adiabatic heating by downwelling within the auroral hot-spot region. The former mechanism would be consistent with the vertical profiles of polycyclic aromatic hydrocarbons (PAHs) and haze particles predicted in auroral-chemistry models (Wong et al., 2000; 2003). Retrievals of C2H2 and C2H6 were also performed and indicate C2H2 is enriched but C2H6 is depleted in auroral regions relative to quiescent regions. For example, using CIRS ÎŽÎœ ˜= 2.5 cm-1 spectra, we determined that C2H2 at 0.98 mbar increases by 175.3 ± 89.3 ppbv while C2H6 at 4.7 mbar decreases by 0.86 ± 0.59 ppmv in comparing results at 70°N, 180°W and 70°N, 60°W. These results represent a mean of values retrieved from different initial assumptions and thus we believe they are robust. We believe these contrasts in C2H2 and C2H6 between auroral and quiescent regions can be explained by a coupling of auroral-driven chemistry and horizontal advection. Ion-neutral and electron recombination chemistry in the auroral region enriches all C2 hydrocarbons but in particular, the unsaturated C2H2 and C2H4 hydrocarbons. Once advected outside of the auroral region, the unsaturated C2 hydrocarbons are converted into C2H6 by neutral photochemistry thereby enriching C2H6 in quiescent regions, which gives the impression it is depleted inside the auroral region

    Jupiter’s auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra measured in December 2014

    No full text
    We present a retrieval analysis of TEXES (Texas Echelon Cross Echelle Spectrograph (Lacy et al., 2002)) spectra of Jupiter's high latitudes obtained on NASA's Infrared Telescope Facility on December 10 and 11th 2014. The vertical temperature profile and vertical profiles of C 2 H 2 , C 2 H 4 and C 2 H 6 were retrieved at both high-northern and high-southern latitudes and results were compared in ‘quiescent’ regions and regions known to be affected by Jupiter's aurora in order to highlight how auroral processes modify the thermal structure and hydrocarbon chemistry of the stratosphere. In qualitative agreement with Sinclair et al. (2017a), we find temperatures in auroral regions to be elevated with respect to quiescent regions at two discrete pressures levels at approximately 1 mbar and 0.01 mbar. For example, in comparing retrieved temperatures at 70°N, 60°W (a representative quiescent region) and 70°N, 180°W (centred on the northern auroral oval), temperatures increase by 19.0 ± 4.2 K at 0.98 mbar, 20.8 ± 3.9 K at 0.01 mbar but only by 8.3 ± 4.9 K at the intermediate level of 0.1 mbar. We conclude that elevated temperatures at 0.01 mbar result from heating by joule resistance of the atmosphere and the energy imparted by electron and ion precipitation. However, temperatures at 1 mbar are considered to result either from heating by shortwave radiation of aurorally-produced haze particulates or precipitation of higher energy population of charged particles. Our former conclusion would be consistent with results of auroral-chemistry models, that predict the highest number densities of aurorally-produced haze particles at this pressure level (Wong et al., 2000, 2003). C 2 H 2 and C 2 H 4 exhibit enrichments but C 2 H 6 remains constant within uncertainty when comparing retrieved concentrations in the northern auroral region with quiescent longitudes in the same latitude band. At 1 mbar, C 2 H 2 increases from 278.4 ± 40.3 ppbv at 70°N, 60°W to 564.4 ± 72.0 ppbv at 70°N, 180°W and at 0.01 mbar, over the same longitude range at 70°N, C 2 H 4 increases from 0.669 ± 0.129 ppmv to 6.509 ± 0.811 ppmv. However, we note that non-LTE (local thermodynamic equilibrium) emission may affect the cores of the strongest C 2 H 2 and C 2 H 4 lines on the northern auroral region, which may be a possible source of error in our derived concentrations. We retrieved concentrations of C 2 H 6 at 1 mbar of 9.03 ± 0.98 ppmv at 70°N, 60°W and 7.66 ± 0.70 ppmv at 70°N, 180°W. Thus, C 2 H 6 's concentration appears constant (within uncertainty) as a function of longitude at 70°N

    Seasonal variations of temperature, acetylene and ethane in Saturn's atmosphere from 2005 to 2010, as observed by Cassini-CIRS

    No full text
    Acetylene (C2H2) and ethane (C2H6) are by-products of complex photochemistry in the stratosphere of Saturn. Both hydrocarbons are important to the thermal balance of Saturn's stratosphere and serve as tracers of vertical motion in the lower stratosphere. Earlier studies of Saturn's hydrocarbons using Cassini-CIRS observations have provided only a snapshot of their behaviour. Following the vernal equinox in August 2009, Saturn's northern and southern hemispheres have entered spring and autumn, respectively, however the response of Saturn's hydrocarbons to this seasonal shift remains to be determined. In this paper, we investigate how the thermal structure and concentrations of acetylene and ethane have evolved with the changing season on Saturn. We retrieve the vertical temperature profiles and acetylene and ethane volume mixing ratios from ΎΜ̃=15.5cm-1 Cassini-CIRS observations. In comparing 2005 (solar longitude, Ls~308°), 2009 (Ls~3°) and 2010 (Ls~15°) results, we observe the disappearance of Saturn's warm southern polar hood with cooling of up to 17.1K±0.8K at 1.1mbar at high-southern latitudes. Comparison of the derived temperature trend in this region with a radiative climate model (Section 4 of Fletcher et al., 2010 and Greathouse et al. (2013, in preparation)) indicates that this cooling is radiative although dynamical changes in this region cannot be ruled out. We observe a21±12% enrichment of acetylene and a 29±11% enrichment of ethane at 25°N from 2005 to 2009, suggesting downwelling at this latitude. At 15°S, both acetylene and ethane exhibit a decrease in concentration of 6±11% and 17±9% from 2005 to 2010, respectively, which suggests upwelling at this latitude (though a statistically significant change is only exhibited by ethane). These implied vertical motions at 15°S and 25°N are consistent with a recently-developed global circulation model of Saturn's tropopause and stratosphere(Friedson and Moses, 2012), which predicts this pattern of upwelling and downwelling as a result of a seasonally-reversing Hadley circulation. Ethane exhibits a general enrichment at mid-northern latitudes from 2005 to 2009. As the northern hemisphere approaches summer solstice in 2017, this feature might indicate an onset of a meridional enrichment of ethane, as has been observed in the southern hemisphere during/after southern summer solstice. © 2013 Elsevier Inc

    Assessing the long-term variability of acetylene and ethane in the stratosphere of Jupiter

    No full text
    Acetylene (C 2 H 2 ) and ethane (C 2 H 6 ) are both produced in the stratosphere of Jupiter via photolysis of methane (CH 4 ). Despite this common source, the latitudinal distribution of the two species is radically different, with acetylene decreasing in abundance towards the pole, and ethane increasing towards the pole. We present six years of NASA IRTF TEXES mid-infrared observations of the zonally-averaged emission of methane, acetylene and ethane. We confirm that the latitudinal distributions of ethane and acetylene are decoupled, and that this is a persistent feature over multiple years. The acetylene distribution falls off towards the pole, peaking at ~30°N with a volume mixing ratio (VMR) of ~0.8 parts per million (ppm) at 1 mbar and still falling off at ± 70° with a VMR of ~0.3 ppm. The acetylene distributions are asymmetric on average, but as we move from 2013 to 2017, the zonally-averaged abundance becomes more symmetric about the equator. We suggest that both the short term changes in acetylene and its latitudinal asymmetry is driven by changes to the vertical stratospheric mixing, potentially related to propagating wave phenomena. Unlike acetylene, ethane has a symmetric distribution about the equator that increases toward the pole, with a peak mole fraction of ~18 ppm at about ± 50° latitude, with a minimum at the equator of ~10 ppm at 1 mbar. The ethane distribution does not appear to respond to mid-latitude stratospheric mixing in the same way as acetylene, potentially as a result of the vertical gradient of ethane being much shallower than that of acetylene. The equator-to-pole distributions of acetylene and ethane are consistent with acetylene having a shorter lifetime than ethane that is not sensitive to longer advective timescales, but is augmented by short-term dynamics, such as vertical mixing. Conversely, the long lifetime of ethane allows it to be transported to higher latitudes faster than it can be chemically depleted
    corecore