10 research outputs found

    Proinsulin Atypical Maturation and Disposal Induces Extensive Defects in Mouse Ins2+/Akita β-Cells

    Get PDF
    Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2+/Akita β-cells. We used T antigen-transformed Ins2+/Akita and control Ins2+/+ β-cells established from Akita and wild-type littermate mice. In Ins2+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes

    MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway

    No full text
    Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA) - anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion. © 2012 Brozzi et al

    Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion

    No full text
    It is well established that ATP is co-secreted with insulin and zinc from pancreatic beta-cells (β-cells) in response to elevations in extracellular glucose concentration. Despite this knowledge, the physiological roles of extracellular secreted ATP and zinc are ill-defined. We hypothesized that secreted ATP and zinc are autocrine purinergic signaling molecules that activate P2X purinergic receptor (P2XR) channels expressed by β-cells to enhance glucose-stimulated insulin secretion (GSIS). To test this postulate, we performed ELISA assays for secreted insulin at fixed time points within a “real-time” assay and confirmed that the physiological insulin secretagogue glucose stimulates secretion of ATP and zinc into the extracellular milieu along with insulin from primary rat islets. Exogenous ATP and zinc alone or together also induced insulin secretion in this model system. Most importantly, the presence of an extracellular ATP scavenger, a zinc chelator, and P2 receptor antagonists attenuated GSIS. Furthermore, mRNA and protein were expressed in immortalized β-cells and primary islets for a unique subset of P2XR channel subtypes, P2X2, P2X3, P2X4, and P2X6, which are each gated by extracellular ATP and modulated positively by extracellular zinc. On the basis of these results, we propose that, within endocrine pancreatic islets, secreted ATP and zinc have profound autocrine regulatory influence on insulin secretion via ATP-gated and zinc-modulated P2XR channels

    Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes

    No full text
    Identification of epitopes that are recognized by diabetogenic T cells and cause selective beta cell destruction in type 1 diabetes (T1D) has focused on peptides originating from native beta cell proteins. Translational errors represent a major potential source of antigenic peptides to which central immune tolerance is lacking. Here, we describe an alternative open reading frame within human insulin mRNA encoding a highly immunogenic polypeptide that is targeted by T cells in T1D patients. We show that cytotoxic T cells directed against the N-terminal peptide of this nonconventional product are present in the circulation of individuals diagnosed with T1D, and we provide direct evidence that such CD8+ T cells are capable of killing human beta cells and thereby may be diabetogenic. This study reveals a new source of nonconventional polypeptides that act as self-epitopes in clinical autoimmune disease

    Biogenesis of the insulin secretory granule in health and disease

    No full text
    The secretory granules of pancreatic beta cells are specialized organelles responsible for the packaging, storage and secretion of the vital hormone insulin. The insulin secretory granules also contain more than 100 other proteins including the proteases involved in proinsulin-to insulin conversion, other precursor proteins, minor co-secreted peptides, membrane proteins involved in cell trafficking and ion translocation proteins essential for regulation of the intragranular environment. The synthesis, transport and packaging of these proteins into nascent granules must be carried out in a co-ordinated manner to ensure correct functioning of the granule. The process is regulated by many circulating nutrients such as glucose and can change under different physiological states. This chapter discusses the various processes involved in insulin granule biogenesis with a focus on the granule composition in health and disease1134173
    corecore