760 research outputs found

    Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic

    Get PDF
    We diagnose the relative influences of local-scale biogeochemical cycling and regional-scale ocean circulation on Atlantic barium cycling by analysing four new depth profiles of dissolved Ba concentrations and isotope compositions from the South and tropical North Atlantic. These new profiles exhibit systematic vertical, zonal and meridional variations that reflect the influence of both local-scale barite cycling and large-scale ocean circulation. Epipelagic decoupling of dissolved Ba and Si reported previously in the tropics is also found to be associated with significant Ba isotope heterogeneity. As such, we contend that this decoupling originates from the depth segregation of opal and barite formation but is exacerbated by weak vertical mixing. Zonal influence from isotopically-‘heavy’ water masses in the western North Atlantic evidence the advective inflow of Ba-depleted Upper Labrador Sea Water, which is not seen in the eastern basin or the South Atlantic. Meridional variations in Atlantic Ba isotope systematics below 2000 m appear entirely controlled by conservative mixing. Using an inverse isotopic mixing model, we calculate the Ba isotope composition of the Ba-poor northern end-member as +0.45 ‰ and the Ba-rich southern end-member +0.26 ‰, relative to NIST SRM 3104a. The near-conservative behaviour of Ba below 2000 m indicates that Ba isotopes can serve as an independent tracer of the provenance of northern- versus southern-sourced water masses in the deep Atlantic Ocean. This finding may prove useful in palaeoceanographic studies, should appropriate sedimentary archives be identified, and offers new insights into the processes that cycle Ba in seawater

    Seasonal cycling of zinc and cobalt in the south-eastern Atlantic along the GEOTRACES GA10 section

    Get PDF
    Abstract. We report the distributions and stoichiometry of dissolved zinc (dZn) and cobalt (dCo) in sub-tropical and sub-Antarctic waters of the south-eastern Atlantic Ocean during austral spring 2010 and summer 2011/2012. In sub-tropical surface waters, mixed-layer dZn and dCo concentrations during early spring were 1.60 ± 2.58 nM and 30 ± 11 pM, respectively, compared with summer values of 0.14 ± 0.08 nM and 24 ± 6 pM. The elevated spring dZn concentrations resulted from an apparent offshore transport of elevated dZn at depths between 20–55 m, derived from the Agulhas Bank. In contrast, open-ocean sub-Antarctic surface waters displayed largely consistent inter-seasonal mixed-layer dZn and dCo concentrations of 0.10 ± 0.07 nM and 11 ± 5 pM, respectively. Trace metal stoichiometry, calculated from concentration inventories, suggests a greater overall removal for dZn relative to dCo in the upper water column of the south-eastern Atlantic, with inter-seasonally decreasing dZn / dCo inventory ratios of 19–5 and 13–7 mol mol−1 for sub-tropical surface water and sub-Antarctic surface water, respectively. In this paper, we investigate how the seasonal influences of external input and phytoplankton succession may relate to the distribution of dZn and dCo and variation in dZn / dCo stoichiometry across these two distinct ecological regimes in the south-eastern Atlantic. </jats:p

    Sensitivity of Modeled CO2 Air–Sea Flux in a Coastal Environment to Surface Temperature Gradients, Surfactants, and Satellite Data Assimilation

    Get PDF
    This work evaluates the sensitivity of CO2 air–sea gas exchange in a coastal site to four different model system configurations of the 1D coupled hydrodynamic–ecosystem model GOTM–ERSEM, towards identifying critical dynamics of relevance when specifically addressing quantification of air–sea CO2 exchange. The European Sea Regional Ecosystem Model (ERSEM) is a biomass and functional group-based biogeochemical model that includes a comprehensive carbonate system and explicitly simulates the production of dissolved organic carbon, dissolved inorganic carbon and organic matter. The model was implemented at the coastal station L4 (4 nm south of Plymouth, 50°15.00’N, 4°13.02’W, depth of 51 m). The model performance was evaluated using more than 1500 hydrological and biochemical observations routinely collected at L4 through the Western Coastal Observatory activities of 2008—2009. In addition to a reference simulation (A), we ran three distinct experiments to investigate the sensitivity of the carbonate system and modeled air–sea fluxes to (B) the sea-surface temperature (SST) diurnal cycle and thus also the near-surface verticalgradients,(C)biologicalsuppressionofgasexchangeand(D)dataassimilationusingsatellite Earth observation data. The reference simulation captures well the physical environment (simulated SST has a correlation with observations equal to 0.94 with a p > 0.95). Overall, the model captures the seasonal signal in most biogeochemical variables including the air–sea flux of CO2 and primary production and can capture some of the intra-seasonal variability and short-lived blooms. The model correctlyreproducestheseasonalityofnutrients(correlation>0.80forsilicate,nitrateandphosphate), surface chlorophyll-a (correlation > 0.43) and total biomass (correlation > 0.7) in a two year run for 2008–2009. The model simulates well the concentration of DIC, pH and in-water partial pressure of CO2 (pCO2) with correlations between 0.4–0.5. The model result suggest that L4 is a weak net source of CO2 (0.3–1.8 molCm−2 year−1). The results of the three sensitivity experiments indicate that both resolving the temperature profile near the surface and assimilation of surface chlorophyll-a significantlyimpacttheskillofsimulatingthebiogeochemistryatL4andallofthecarbonatechemistry related variables. These results indicate that our forecasting ability of CO2 air–sea flux in shelf seas environments and their impact in climate modeling should consider both model refinements as means of reducing uncertainties and errors in any future climate projections

    Determining Atlantic Ocean province contrasts and variations

    Get PDF
    The Atlantic Meridional Transect (AMT) series of twenty-five cruises over the past twenty years has produced a rich depth-resolved biogeochemical in situ data resource consisting of a wealth of core variables. These multiple core datasets, key to the operation of AMT, such as temperature, salinity, oxygen and inorganic nutrients, are often only used as ancillary measurements for contextualising hypothesis-driven process studies. In this paper these core in situ variables, alongside data drawn from satellite Earth Observation (EO) and modelling, have been analysed to determine characteristic oceanic province variations encountered over the last twenty years on the AMT through the Atlantic Ocean. The EO and modelling analysis shows the variations of key environmental variables in each province, such as surface currents, the net heat flux and subsequent large scale biological responses, such as primary production. The in situ core dataset analysis allows the variation in features such as the tropical oxygen minimum zone to be quantified as well as showing clear contrasts between the provinces in nutrient stoichiometry. Such observations and relationships can be used within basin scale biogeochemical models to set realistic variation ranges

    Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era

    Get PDF
    The widespread appearance of megaphyll leaves, with their branched veins and planate form, did not occur until the close of the Devonian period at about 360 Myr ago. This happened about 40 Myr after simple leafless vascular plants first colonized the land in the Late Silurian/Early Devonian, but the reason for the slow emergence of this common feature of present-day plants is presently unresolved. Here we show, in a series of quantitative analyses using fossil leaf characters and biophysical principles, that the delay was causally linked with a 90% drop in atmospheric pCO2 during the Late Palaeozoic era. In contrast to simulations for a typical Early Devonian land plant, possessing few stomata on leafless stems, those for a planate leaf with the same stomatal characteristics indicate that it would have suffered lethal overheating, because of greater interception of solar energy and low transpiration. When planate leaves first appeared in the Late Devonian and subsequently diversified in the Carboniferous period, they possessed substantially higher stomatal densities. This observation is consistent with the effects of the pCO2 on stomatal development and suggests that the evolution of planate leaves could only have occurred after an increase in stomatal density, allowing higher transpiration rates that were sufficient to maintain cool and viable leaf temperatures

    Determination of picomolar dissolved free amino acids along a South Atlantic transect using reversed-phase high-performance liquid chromatography

    Get PDF
    Dissolved free amino acids (DFAA) in seawater are a form of nitrogen (N) available for marine microbes. In oligotrophic environments where N-containing nutrients are the limiting factor for microbial growth, N nutrition from DFAA could be crucial, but as yet it is poorly resolved. Measurements of individual DFAA are challenging as concentrations are typically in the low nmol L− 1 range. Here we report modifications to methodology using o-phthaldialdehyde (OPA) derivatization and reversed phase high performance liquid chromatography (HPLC) that provide a 30-fold improvement in sensitivity enabling the detection of 15 amino acids in seawater with a limit of detection as low as 10 pmol L− 1 with accuracy and precision of better than 10%. This analytical methodology is now suitable for the challenging quantitation of DFAA in oligotrophic seawaters. The method was successfully applied to a suite of seawater samples collected on a cruise crossing the South Atlantic Ocean, where concentrations of DFAAs were generally low (sub nmol L− 1), revealing basin-scale features in the oceanographic distributions of DFAA. This unique dataset implies that DFAAs are an important component of the N cycle in both near-coastal and open oceans. Further calculations suggest that the proportions of organic N originating from DFAA sources were significant, contributing between 0.2 and 200% that of NH4+ and up to 77% that of total inorganic nitrogen in the upper 400 m in some regions of the transect

    The 2021 outburst of the recurrent nova RS Ophiuchi observed in X-rays by the Neil Gehrels Swift Observatory: a comparative study

    Get PDF
    On 2021 August 8, the recurrent nova RS Ophiuchi erupted again, after an interval of 15.5 yr. Regular monitoring by the Neil Gehrels Swift Observatory began promptly, on August 9.9 (0.37 day after the optical peak), and continued until the source passed behind the Sun at the start of November, 86 days later. Observations then restarted on day 197, once RS Oph emerged from the Sun constraint. This makes RS Oph the first Galactic recurrent nova to have been monitored by Swift throughout two eruptions. Here we investigate the extensive X-ray datasets from 2006 and 2021, as well as the more limited data collected by EXOSAT in 1985. The hard X-rays arising from shock interactions between the nova ejecta and red giant wind are similar following the last two eruptions. In contrast, the early super-soft source (SSS) in 2021 was both less variable and significantly fainter than in 2006. However, 0.3–1 keV light-curves from 2021 reveal a 35 s quasi-periodic oscillation consistent in frequency with the 2006 data. The Swift X-ray spectra from 2021 are featureless, with the soft emission typically being well parametrized by a simple blackbody, while the 2006 spectra showed much stronger evidence for superimposed ionized absorption edges. Considering the data after day 60 following each eruption, during the supersoft phase the 2021 spectra are hotter, with smaller effective radii and lower wind absorption, leading to an apparently reduced bolometric luminosity. We explore possible explanations for the gross differences in observed SSS behaviour between the 2006 and 2021 outbursts

    Extreme drought pushes stream invertebrate communities over functional thresholds

    Get PDF
    Functional traits are increasingly being used to predict extinction risks and range shifts under long‐term climate change scenarios, but have rarely been used to study vulnerability to extreme climatic events, such as supraseasonal droughts. In streams, drought intensification can cross thresholds of habitat loss, where marginal changes in environmental conditions trigger disproportionate biotic responses. However, these thresholds have been studied only from a structural perspective, and the existence of functional nonlinearity remains unknown. We explored trends in invertebrate community functional traits along a gradient of drought intensity, simulated over 18 months, using mesocosms analogous to lowland headwater streams. We modelled the responses of 16 traits based on a priori predictions of trait filtering by drought, and also examined the responses of trait profile groups (TPGs) identified via hierarchical cluster analysis. As responses to drought intensification were both linear and nonlinear, generalized additive models (GAMs) were chosen to model response curves, with the slopes of fitted splines used to detect functional thresholds during drought. Drought triggered significant responses in 12 (75%) of the a priori‐selected traits. Behavioural traits describing movement (dispersal, locomotion) and diet were sensitive to moderate‐intensity drought, as channels fragmented into isolated pools. By comparison, morphological and physiological traits showed little response until surface water was lost, at which point we observed sudden shifts in body size, respiration mode and thermal tolerance. Responses varied widely among TPGs, ranging from population collapses of non‐aerial dispersers as channels fragmented to irruptions of small, eurythermic dietary generalists upon extreme dewatering. Our study demonstrates for the first time that relatively small changes in drought intensity can trigger disproportionately large functional shifts in stream communities, suggesting that traits‐based approaches could be particularly useful for diagnosing catastrophic ecological responses to global change

    Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation

    Get PDF
    Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico- and nanophytoplankton biomass in coastal areas. Among the pico-fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico- and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light-harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega-3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition-related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters

    Teprotumumab for Thyroid-Associated Ophthalmopathy

    Get PDF
    BACKGROUND: Thyroid-associated ophthalmopathy, a condition commonly associated with Graves’ disease, remains inadequately treated. Current medical therapies, which primarily consist of glucocorticoids, have limited efficacy and present safety concerns. Inhibition of the insulin-like growth factor I receptor (IGF-IR) is a new therapeutic strategy to attenuate the underlying autoimmune pathogenesis of ophthalmopathy. / METHODS: We conducted a multicenter, double-masked, randomized, placebo-controlled trial to determine the efficacy and safety of teprotumumab, a human monoclonal antibody inhibitor of IGF-IR, in patients with active, moderate-to-severe ophthalmopathy. A total of 88 patients were randomly assigned to receive placebo or active drug administered intravenously once every 3 weeks for a total of eight infusions. The primary end point was the response in the study eye. This response was defined as a reduction of 2 points or more in the Clinical Activity Score (scores range from 0 to 7, with a score of ≥3 indicating active thyroid-associated ophthalmopathy) and a reduction of 2 mm or more in proptosis at week 24. Secondary end points, measured as continuous variables, included proptosis, the Clinical Activity Score, and results on the Graves’ ophthalmopathy–specific quality-of-life questionnaire. Adverse events were assessed. / RESULTS: In the intention-to-treat population, 29 of 42 patients who received teprotumumab (69%), as compared with 9 of 45 patients who received placebo (20%), had a response at week 24 (P<0.001). Therapeutic effects were rapid; at week 6, a total of 18 of 42 patients in the teprotumumab group (43%) and 2 of 45 patients in the placebo group (4%) had a response (P<0.001). Differences between the groups increased at subsequent time points. The only drug-related adverse event was hyperglycemia in patients with diabetes; this event was controlled by adjusting medication for diabetes. / CONCLUSIONS: In patients with active ophthalmopathy, teprotumumab was more effective than placebo in reducing proptosis and the Clinical Activity Score. (Funded by River Vision Development and others; ClinicalTrials.gov number, NCT01868997.
    corecore