1,635 research outputs found
Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: a perspective
After over 60 years of therapeutic use in the UK, paracetamol (acetaminophen, N-acetyl-p-aminophenol, APAP) remains the subject of considerable research into both its mode of action and toxicity. The pharmacological properties of APAP are the focus of some activity, with the role of the metabolite N-arachidonoylaminophenol (AM404) still a topic of debate. However, that the hepatotoxicity of APAP results from the production of the reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI/NABQI) that can deplete glutathione, react with cellular macromolecules, and initiate cell death, is now beyond dispute. The disruption of cellular pathways that results from the production of NAPQI provides a source of potential biomarkers of the severity of the damage. Research in this area has provided new diagnostic markers such as the microRNA miR-122 as well as mechanistic biomarkers associated with apoptosis, mitochondrial dysfunction, inflammation and tissue regeneration. Additionally, biomarkers of, and systems biology models for, glutathione depletion have been developed. Furthermore, there have been significant advances in determining the role of both the innate immune system and genetic factors that might predispose individuals to APAP-mediated toxicity. This perspective highlights some of the progress in current APAP-related research
Acceptability of a first-line anti-tuberculosis formulation for children: qualitative data from the SHINE trial.
SETTING: We conducted a qualitative exploration into the palatability and acceptability of a novel fixed-dose combination (FDC) anti-tuberculosis drug. This study was nested in the SHINE (Shorter treatment for minimal TB in children) trial, which compares the safety and efficacy of treating non-severe drug-susceptible tuberculosis (TB) with a 6 vs. 4 months anti-tuberculosis regimen in children aged 0-16 years. Participants were recruited in Cape Town, South Africa.OBJECTIVE: To describe the palatability and acceptability of a FDC of rifampicin, isoniazid and pyrazinamide among South African children and their caregivers in the SHINE trial.METHODS: We conducted 20 clinic observations of treatment administration, during which we conducted 16 semi-structured interviews with children and their caregivers. Data were organised thematically to report on experiences with administering and ingesting the FDC.RESULTS: Children and caregivers' experiences varied from delight to disgust. In general, participants said that the FDC compared favourably to other formulations. Pragmatic challenges such as dissolving the FDC and the time required to administer the FDC impeded caregivers' ability to integrate treatment into their daily routines. Drug manipulation was common among caregivers to improve TB treatment administration.CONCLUSION: This novel FDC appears acceptable for children, albeit with practical challenges to administration. Scale-up of FDC use should include supplementary intervention components to support caregivers
Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study.
The syndrome of fever is a commonly presenting complaint among persons seeking healthcare in low-resource areas, yet the public health community has not approached fever in a comprehensive manner. In many areas, malaria is over-diagnosed, and patients without malaria have poor outcomes. We prospectively studied a cohort of 870 pediatric and adult febrile admissions to two hospitals in northern Tanzania over the period of one year using conventional standard diagnostic tests to establish fever etiology. Malaria was the clinical diagnosis for 528 (60.7%), but was the actual cause of fever in only 14 (1.6%). By contrast, bacterial, mycobacterial, and fungal bloodstream infections accounted for 85 (9.8%), 14 (1.6%), and 25 (2.9%) febrile admissions, respectively. Acute bacterial zoonoses were identified among 118 (26.2%) of febrile admissions; 16 (13.6%) had brucellosis, 40 (33.9%) leptospirosis, 24 (20.3%) had Q fever, 36 (30.5%) had spotted fever group rickettsioses, and 2 (1.8%) had typhus group rickettsioses. In addition, 55 (7.9%) participants had a confirmed acute arbovirus infection, all due to chikungunya. No patient had a bacterial zoonosis or an arbovirus infection included in the admission differential diagnosis. Malaria was uncommon and over-diagnosed, whereas invasive infections were underappreciated. Bacterial zoonoses and arbovirus infections were highly prevalent yet overlooked. An integrated approach to the syndrome of fever in resource-limited areas is needed to improve patient outcomes and to rationally target disease control efforts
ERBB4 confers metastatic capacity in Ewing sarcoma.
Metastatic spread is the single-most powerful predictor of poor outcome in Ewing sarcoma (ES). Therefore targeting pathways that drive metastasis has tremendous potential to reduce the burden of disease in ES. We previously showed that activation of the ERBB4 tyrosine kinase suppresses anoikis, or detachment-induced cell death, and induces chemoresistance in ES cell lines in vitro. We now show that ERBB4 is transcriptionally overexpressed in ES cell lines derived from chemoresistant or metastatic ES tumours. ERBB4 activates the PI3K-Akt cascade and focal adhesion kinase (FAK), and both pathways contribute to ERBB4-mediated activation of the Rac1 GTPase in vitro and in vivo. ERBB4 augments tumour invasion and metastasis in vivo, and these effects are blocked by ERBB4 knockdown. ERBB4 expression correlates significantly with reduced disease-free survival, and increased expression is observed in metastatic compared to primary patient-matched ES biopsies. Our findings identify a novel ERBB4-PI3K-Akt-FAK-Rac1 pathway associated with aggressive disease in ES. These results predict that therapeutic targeting of ERBB4, alone or in combination with cytotoxic agents, may suppress the metastatic phenotype in ES
Lack of Cetuximab induced skin toxicity in a previously irradiated field: case report and review of the literature
<p>Abstract</p> <p>Introduction</p> <p>Mutation, amplification or dysregulation of the EGFR family leads to uncontrolled division and predisposes to cancer. Inhibiting the EGFR represents a form of targeted cancer therapy.</p> <p>Case report</p> <p>We report the case of 79 year old gentlemen with a history of skin cancer involving the left ear who had radiation and surgical excision. He had presented with recurrent lymph node in the left upper neck. We treated him with radiation therapy concurrently with Cetuximab. He developed a skin rash over the face and neck area two weeks after starting Cetuximab, which however spared the previously irradiated area.</p> <p>Conclusion</p> <p>The etiology underlying the sparing of the previously irradiated skin maybe due to either decrease in the population of EGFR expressing cells or decrease in the EGFR expression.</p> <p>We raised the question that "Is it justifiable to use EGFR inhibitors for patients having recurrence in the previously irradiated field?" We may need further research to answer this question which may guide the physicians in choosing appropriate drug in this scenario.</p
Seasonal Depletion of the Dissolved Iron Reservoirs in the Sub-Antarctic zone of the Southern Atlantic Ocean
Seasonal progression of dissolved iron (DFe) concentrations in the upper water column were examined during four occupations in the Atlantic sector of the Southern Ocean. DFe inventories from euphotic and aphotic reservoirs decreased progressively from July to February, while dissolved inorganic nitrogen (DIN) decreased from July to January with no significant change between January and February. Results suggest that between July and January, DFe loss from both euphotic and aphotic reservoirs were predominantly in support of phytoplankton growth (Iron to carbon (Fe:C) uptake ratio of 16±3 μmol mol‐1) highlighting the importance of the “winter DFe‐reservoir” for biological uptake. During January to February, excess loss of DFe relative to DIN (Fe:C uptake ratio of 44±8 μmol mol‐1 and aphotic DFe loss rate of 0.34±0.06 μmol m‐2 d‐1) suggests that scavenging is the dominant removal mechanism of DFe from the aphotic, while continued production is likely supported by recycled nutrients.
Plain Language Summary
Trace metal iron is one of the limiting nutrients for primary productivity in the Southern Ocean; however the relative importance of seasonal iron supply and sinks remains poorly understood, due to sparse data coverage across the seasonal cycle and lack of high‐resolution dissolved iron (DFe) measurements. Here, we present four “snap‐shots” of DFe measurements at a single station in the south‐east Southern Atlantic Ocean (one in winter and three in late spring‐summer), to address the seasonal evolution of DFe and dissolved inorganic nitrogen (DIN) concentrations within the biologically active sunlit and subsurface reservoirs. We observed a seasonal depletion of DFe inventories from July‐February, while DIN inventories decreases from July‐January with no concomitant changes between January‐February. This suggests that, in addition to biological uptake in the sunlit layer, the observed decrease in DFe inventories below this (relative to DIN) is driven by aggregation and incorporation of iron particles into larger "marine snow" sinking particles, while nutrient recycling is driving the observed continuation of primary productivity during late summer. Our results provide insight into seasonal change of DFe availability in different reservoirs where interplay between removal and supply processes are controlling its distributions and bioavailability to support upper surface primary production
Evolution of Anolis Lizard Dewlap Diversity
BACKGROUND: The dewlaps of Anolis lizards provide a classic example of a complex signaling system whose function and evolution is poorly understood. Dewlaps are flaps of skin beneath the chin that are extended and combined with head and body movements for visual signals and displays. They exhibit extensive morphological variation and are one of two cladistic features uniting anoles, yet little is known regarding their function and evolution. We quantified the diversity of anole dewlaps, investigated whether dewlap morphology was informative regarding phylogenetic relationships, and tested two separate hypotheses: (A) similar Anolis habitat specialists possess similar dewlap configurations (Ecomorph Convergence hypothesis), and (B) sympatric species differ in their dewlap morphologies to a greater extent than expected by chance (Species Recognition hypothesis). METHODOLOGY/PRINCIPAL FINDINGS: We found that dewlap configurations (sizes, patterns and colors) exhibit substantial diversity, but that most are easily categorized into six patterns that incorporate one to three of 13 recognizable colors. Dewlap morphology is not phylogenetically informative and, like other features of anoles, exhibits convergence in configurations. We found no support for the Ecomorph Convergence hypothesis; species using the same structural habitat were no more similar in dewlap configuration than expected by chance. With one exception, all sympatric species in four communities differ in dewlap configuration. However, this provides only weak support for the Species Recognition hypothesis because, due to the great diversity in dewlap configurations observed across each island, few cases of sympatric species with identical dewlaps would be expected to co-occur by chance alone. CONCLUSIONS/SIGNIFICANCE: Despite previous thought, most dewlaps exhibit easily characterizable patterns and colorations. Nevertheless, dewlap variation is extensive and explanations for the origin and evolution of this diversity are lacking. Our data do not support two hypothesized explanations for this diversity, but others such as sexual selection remain to be tested
- …