3,865 research outputs found
High nutrient transport and cycling potential revealed in the microbial metagenome of australian sea lion (neophoca cinerea) faeces
Metagenomic analysis was used to examine the taxonomic diversity and metabolic potential of an Australian sea lion (Neophoca cinerea) gut microbiome. Bacteria comprised 98% of classifiable sequences and of these matches to Firmicutes (80%) were dominant, with Proteobacteria and Actinobacteria representing 8% and 2% of matches respectively. The relative proportion of Firmicutes (80%) to Bacteriodetes (2%) is similar to that in previous studies of obese humans and obese mice, suggesting the gut microbiome may confer a predisposition towards the excess body fat that is needed for thermoregulation within the cold oceanic habitats foraged by Australian sea lions. Core metabolic functions, including carbohydrate utilisation (14%), protein metabolism (9%) and DNA metabolism (7%) dominated the metagenome, but in comparison to human and fish gut microbiomes there was a significantly higher proportion of genes involved in phosphorus metabolism (2.4%) and iron scavenging mechanisms (1%). When sea lions defecate at sea, the relatively high nutrient metabolism potential of bacteria in their faeces may accelerate the dissolution of nutrients from faecal particles, enhancing their persistence in the euphotic zone where they are available to stimulate marine production. © 2012 Lavery et al
Dominant Role of Nucleotide Substitution in the Diversification of Serotype 3 Pneumococci over Decades and during a Single Infection
Streptococcus pneumoniae of serotype 3 possess a mucoid capsule and cause disease associated with high mortality rates relative to other pneumococci. Phylogenetic analysis of a complete reference genome and 81 draft sequences from clonal complex 180, the predominant serotype 3 clone in much of the world, found most sampled isolates belonged to a clade affected by few diversifying recombinations. However, other isolates indicate significant genetic variation has accumulated over the clonal complex’s entire history. Two closely related genomes, one from the blood and another from the cerebrospinal fluid, were obtained from a patient with meningitis. The pair differed in their behaviour in a mouse model of disease and in their susceptibility to antimicrobials, with at least some of these changes attributable to a mutation that upregulated
the patAB efflux pump. This indicates clinically important phenotypic variation can accumulate rapidly through
small alterations to the genotype
Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation
Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods
ciliaFA : a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software
Background: Analysis of ciliary function for assessment of patients suspected of primary ciliary dyskinesia (PCD) and
for research studies of respiratory and ependymal cilia requires assessment of both ciliary beat pattern and beat
frequency. While direct measurement of beat frequency from high-speed video recordings is the most accurate and
reproducible technique it is extremely time consuming. The aim of this study was to develop a freely available
automated method of ciliary beat frequency analysis from digital video (AVI) files that runs on open-source software
(ImageJ) coupled to Microsoft Excel, and to validate this by comparison to the direct measuring high-speed video
recordings of respiratory and ependymal cilia. These models allowed comparison to cilia beating between 3 and 52 Hz.
Methods: Digital video files of motile ciliated ependymal (frequency range 34 to 52 Hz) and respiratory epithelial cells
(frequency 3 to 18 Hz) were captured using a high-speed digital video recorder. To cover the range above between 18
and 37 Hz the frequency of ependymal cilia were slowed by the addition of the pneumococcal toxin pneumolysin.
Measurements made directly by timing a given number of individual ciliary beat cycles were compared with those
obtained using the automated ciliaFA system.
Results: The overall mean difference (± SD) between the ciliaFA and direct measurement high-speed digital imaging
methods was −0.05 ± 1.25 Hz, the correlation coefficient was shown to be 0.991 and the Bland-Altman limits of
agreement were from −1.99 to 1.49 Hz for respiratory and from −2.55 to 3.25 Hz for ependymal cilia.
Conclusions: A plugin for ImageJ was developed that extracts pixel intensities and performs fast Fourier
transformation (FFT) using Microsoft Excel. The ciliaFA software allowed automated, high throughput measurement of
respiratory and ependymal ciliary beat frequency (range 3 to 52 Hz) and avoids operator error due to selection bias. We
have included free access to the ciliaFA plugin and installation instructions in Additional file 1 accompanying this
manuscript that other researchers may use
Dynamic Limits on Planar Libration-Orbit Coupling Around an Oblate Primary
This paper explores the dynamic properties of the planar system of an
ellipsoidal satellite in an equatorial orbit about an oblate primary. In
particular, we investigate the conditions for which the satellite is bound in
librational motion or when the satellite will circulate with respect to the
primary. We find the existence of stable equilibrium points about which the
satellite can librate, and explore both the linearized and non-linear dynamics
around these points. Absolute bounds are placed on the phase space of the
libration-orbit coupling through the use of zero-velocity curves that exist in
the system. These zero-velocity curves are used to derive a sufficient
condition for when the satellite's libration is bound to less than 90 degrees.
When this condition is not satisfied so that circulation of the satellite is
possible, the initial conditions at zero libration angle are determined which
lead to circulation of the satellite. Exact analytical conditions for
circulation and the maximum libration angle are derived for the case of a small
satellite in orbits of any eccentricity.Comment: Submitted to Celestial Mechanics and Dynamical Astronom
Commentary 2: The devil is in the detail – lies, damned lies and accounting for the value of banking [part of Book review symposium: Locating banks, tracking money]
Not applicabl
An evaluation of enteral nutrition practices and nutritional provision in children during the entire length of stay in critical care
<b>Background</b>
Provision of optimal nutrition in children in critical care is often challenging. This study evaluated exclusive enteral nutrition (EN) provision practices and explored predictors of energy intake and delay of EN advancement in critically ill children.<p></p>
<b>Methods</b>
Data on intake and EN practices were collected on a daily basis and compared against predefined targets and dietary reference values in a paediatric intensive care unit. Factors associated with intake and advancement of EN were explored.<p></p>
<b>Results</b>
Data were collected from 130 patients and 887 nutritional support days (NSDs). Delay to initiate EN was longer in patients from both the General Surgical and congenital heart defect (CHD) Surgical groups [Median (IQR); CHD Surgical group: 20.3 (16.4) vs General Surgical group: 11.4 (53.5) vs Medical group: 6.5 (10.9) hours; p <= 0.001]. Daily fasting time per patient was significantly longer in patients from the General Surgical and CHD Surgical groups than those from the Medical group [% of 24 h, Median (IQR); CHD Surgical group: 24.0 (29.2) vs General Surgical group: 41.7 (66.7) vs Medical group: 9.4 (21.9); p <= 0.001]. A lower proportion of fluids was delivered as EN per patient (45% vs 73%) or per NSD (56% vs 73%) in those from the CHD Surgical group compared with those with medical conditions. Protein and energy requirements were achieved in 38% and 33% of the NSDs. In a substantial proportion of NSDs, minimum micronutrient recommendations were not met particularly in those patients from the CHD Surgical group. A higher delivery of fluid requirements (p < 0.05) and a greater proportion of these delivered as EN (p < 0.001) were associated with median energy intake during stay and delay of EN advancement. Fasting (31%), fluid restriction (39%) for clinical reasons, procedures requiring feed cessation and establishing EN (22%) were the most common reasons why target energy requirements were not met.<p></p>
<b>Conclusions</b>
Provision of optimal EN support remains challenging and varies during hospitalisation and among patients. Delivery of EN should be prioritized over other "non-nutritional" fluids whenever this is possible.<p></p>
Recommended from our members
Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal
Clear cell renal cell carcinoma is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cancer. We find hotspots of point mutations in the 5’-UTR of TERT, targeting a MYC-MAX-MAD1 repressor, that result in telomere lengthening. The commonest structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This occurs in childhood or adolescence, is generally the initiating event, and precedes emergence of the tumor’s most recent common ancestor by years to decades. Similar genomic changes drive inherited kidney cancers. Modelling differences in age-incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Targeting essential genes in deleted regions of chromosome 3p could represent a potential preventative strategy for renal cancer
Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study
Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth
- …
