300 research outputs found

    A role for SPARC in the moderation of human insulin secretion.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tAIMS/HYPOTHESIS: We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. METHODS: We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. RESULTS: SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01). CONCLUSIONS: Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC's modulation of obesity-induced insulin resistance in adipose tissue.Diabetes Research Wellness Foundatio

    Sequence learning in Associative Neuronal-Astrocytic Network

    Full text link
    The neuronal paradigm of studying the brain has left us with limitations in both our understanding of how neurons process information to achieve biological intelligence and how such knowledge may be translated into artificial intelligence and its most brain-derived branch, neuromorphic computing. Overturning our fundamental assumptions of how the brain works, the recent exploration of astrocytes is revealing that these long-neglected brain cells dynamically regulate learning by interacting with neuronal activity at the synaptic level. Following recent experimental evidence, we designed an associative, Hopfield-type, neuronal-astrocytic network and analyzed the dynamics of the interaction between neurons and astrocytes. We show that astrocytes were sufficient to trigger transitions between learned memories in the neuronal component of the network. Further, we mathematically derived the timing of the transitions that was governed by the dynamics of the calcium-dependent slow-currents in the astrocytic processes. Overall, we provide a brain-morphic mechanism for sequence learning that is inspired by, and aligns with, recent experimental findings. To evaluate our model, we emulated astrocytic atrophy and showed that memory recall becomes significantly impaired after a critical point of affected astrocytes was reached. This brain-inspired and brain-validated approach supports our ongoing efforts to incorporate non-neuronal computing elements in neuromorphic information processing.Comment: 8 pages, 5 figure

    Probing the relaxation towards equilibrium in an isolated strongly correlated 1D Bose gas

    Get PDF
    The problem of how complex quantum systems eventually come to rest lies at the heart of statistical mechanics. The maximum entropy principle put forward in 1957 by E. T. Jaynes suggests what quantum states one should expect in equilibrium but does not hint as to how closed quantum many-body systems dynamically equilibrate. A number of theoretical and numerical studies accumulate evidence that under specific conditions quantum many-body models can relax to a situation that locally or with respect to certain observables appears as if the entire system had relaxed to a maximum entropy state. In this work, we report the experimental observation of the non-equilibrium dynamics of a density wave of ultracold bosonic atoms in an optical lattice in the regime of strong correlations. Using an optical superlattice, we are able to prepare the system in a well-known initial state with high fidelity. We then follow the dynamical evolution of the system in terms of quasi-local densities, currents, and coherences. Numerical studies based on the time-dependent density-matrix renormalization group method are in an excellent quantitative agreement with the experimental data. For very long times, all three local observables show a fast relaxation to equilibrium values compatible with those expected for a global maximum entropy state. We find this relaxation of the quasi-local densities and currents to initially follow a power-law with an exponent being significantly larger than for free or hardcore bosons. For intermediate times the system fulfills the promise of being a dynamical quantum simulator, in that the controlled dynamics runs for longer times than present classical algorithms based on matrix product states can efficiently keep track of.Comment: 8 pages, 6 figure

    Crystal Structure of a Novel Esterase Rv0045c from Mycobacterium tuberculosis

    Get PDF
    There are at least 250 enzymes in Mycobacterium tuberculosis (M. tuberculosis) involved in lipid metabolism. Some of the enzymes are required for bacterial survival and full virulence. The esterase Rv0045c shares little amino acid sequence similarity with other members of the esterase/lipase family. Here, we report the 3D structure of Rv0045c. Our studies demonstrated that Rv0045c is a novel member of α/β hydrolase fold family. The structure of esterase Rv0045c contains two distinct domains: the α/β fold domain and the cap domain. The active site of esterase Rv0045c is highly conserved and comprised of two residues: Ser154 and His309. We proposed that Rv0045c probably employs two kinds of enzymatic mechanisms when hydrolyzing C-O ester bonds within substrates. The structure provides insight into the hydrolysis mechanism of the C-O ester bond, and will be helpful in understanding the ester/lipid metabolism in M. tuberculosis

    Pattern Recognition Analysis of Proton Nuclear Magnetic Resonance Spectra of Brain Tissue Extracts from Rats Anesthetized with Propofol or Isoflurane

    Get PDF
    BACKGROUND: General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize the changes in holistic brain metabolic phenotypes in response to the widely used intravenous anesthetic propofol and the volatile anesthetic isoflurane. METHODOLOGY/PRINCIPAL FINDINGS: Rats were randomized into five groups (n = 7 each group). Propofol and isoflurane were administered to two groups each, for 2 or 6 h. The control group received no anesthesia. Brains were removed directly after anesthesia. Hydrophilic compounds were extracted from excised whole brains and measured by proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of the metabolite profiles. Data were visualized by plotting principal component (PC) scores. In the plots, each point represents an individual sample. The propofol and isoflurane groups were clustered separately on the plots, and this separation was especially pronounced when comparing the 6-h groups. The PC scores of the propofol group were clearly distinct from those of the control group, particularly in the 6-h group, whereas the difference in PC scores was more subtle in the isoflurane group and control groups. CONCLUSIONS/SIGNIFICANCE: The results of the present study showed that propofol and isoflurane exerted differential effects on holistic brain metabolism under anesthesia

    High-intensity-focused ultrasound in the treatment of primary prostate cancer: the first UK series

    Get PDF
    BACKGROUND: The use of minimally invasive ablative therapies in localised prostate cancer offer potential for a middle ground between active surveillance and radical therapy. METHODS: An analysis of men with organ-confined prostate cancer treated with transrectal whole-gland HIFU (Sonablate 500) between 1 February 2005 and 15 May 2007 was carried out in two centres. Outcome data (side-effects using validated patient questionnaires, biochemical, histology) were evaluated. RESULTS: A total of 172 men were treated under general anaesthetic as day-case procedures with 78% discharged a mean 5 h after treatment. Mean follow-up was 346 days (range 135-759 days). Urethral stricture was significantly lower in those with suprapubic catheter compared with urethral catheters (19.4 vs 40.4%, P = 0.005). Antibiotics were given to 23.8% of patients for presumed urinary tract infection and the rate of epididymitis was 7.6%. Potency was maintained in 70% by 12 months, whereas mild stress urinary incontinence (no pads) was reported in 7.0% (12 out of 172) with a further 0.6% (1 out of 172) requiring pads. There was no rectal toxicity and no recto-urethral fistulae. In all, 78.3% achieved a PSA nadir <= 0.5 mu g ml(-1) at 12 months, with 57.8% achieving <= 0.2 mu g ml(-1). Then, 8 out of 13 were retreated with HIFU, one had salvage external beam radiotherapy and four chose active surveillance for small-volume low-risk disease. Overall, there was no evidence of disease (PSA <0.5 mu g ml(-1) or negative biopsy if nadir not achieved) after one HIFU session in 92.4% ( 159 out of 172) of patients. CONCLUSION: HIFU is a minimally invasive, day-case ablative technique that can achieve good biochemical outcomes in the short term with minimal urinary incontinence and acceptable levels of erectile dysfunction. Long-term outcome needs further evaluation and the inception of an international registry for cases treated using HIFU will significantly aid this health technology assessment. British Journal of Cancer (2009) 101, 19-26. doi: 10.1038/sj.bjc.6605116 www.bjcancer.com Published online 9 June 2009 (C) 2009 Cancer Research U

    Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction

    Get PDF
    Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually

    Reduction in membranous expression of β-catenin and increased cytoplasmic E-cadherin expression predict poor survival in gastric cancer

    Get PDF
    β-catenin, a component of the E-cadherin–catenin cell adhesion complex, also plays a separate intracellular signalling role, interacting with APC protein. Intracellular accumulation of β-catenin is common in colorectal neoplasia. β-catenin abnormalities are associated with poor survival in gastric cancer, but previous studies do not differentiate between membrane-associated and intracellular β-catenin. In this study we aimed to determine which type of expression abnormalities for E-cadherin, β-catenin and α-catenin correlate with clinico-pathological features and survival in gastric cancer. Immunoperoxidase staining of paraffin-embedded sections from 40 gastric cancers was performed for E-cadherin, α- and β-catenins using microwave unmasking and an avidin–biotin technique. Clinical data were obtained from case records and cancer registry records. Reduced membranous expression of β-catenin occurred in 10/12 (83%) diffuse and 8/28 (29%) intestinal tumours (P = 0.0014), and was associated with poor differentiation (P = 0.0015) and short survival (P = 0.032), but not with age, sex, tumour size or nodal status. Nuclear expression of β-catenin was uncommon; cytoplasmic expression was observed in 13/40 cases (33%) but did not correlate with histology, tumour grade or survival. Reduced E-cadherin membrane expression was associated with lymph node metastasis (P = 0.02). Neither E-cadherin or α-catenin expression correlated with survival. Reduced membranous expression of β-catenin predicts poor prognosis in gastric cancer, whilst ectopic intracellular expression is relatively rare. The apparent differences in β-catenin expression from those found in colon cancer merit further study. © 1999 Cancer Research Campaig
    corecore