1,460 research outputs found

    Dose-dependent new bone formation by extracorporeal shock wave application on the intact femur of rabbits

    Get PDF
    Background: Whereas various molecular working mechanisms of shock waves have been demonstrated, no study has assessed in detail the influence of varying energy flux densities (EFD) on new bone formation in vivo. Methods: Thirty Chinchilla bastard rabbits were randomly assigned to 5 groups (EFD 0.0, 0.35, 0.5, 0.9 and 1.2 mJ/mm(2)) and treated with extracorporeal shock waves at the distal femoral region (1,500 pulses; 1 Hz frequency). To investigate new bone formation, animals were injected with oxytetracycline at days 5-9 after shock wave application and sacrificed on day 10. Histological sections of all animals were examined using broad-band epifluorescent illumination, contact microradiography and Giemsa-Eosin staining. Results: Application of shock waves induced new bone formation beginning with 0.5 mJ/mm(2) EFD and increasing with 0.9 mJ/mm(2) and 1.2 mJ/mm(2). The latter EFD resulted in new bone formation also on the dorsal cortical bone; cortical fractures and periosteal detachment also occurred. Conclusion: Here, for the first time, a threshold level is presented for new bone formation after applying shock waves to intact bone in vivo. The findings of this study are of considerable significance for preventing unwanted side effects in new approaches in the clinical application of shock waves. Copyright (c) 2008 S. Karger AG, Basel

    Adaptive region growing impulse noise estimator for color images

    Get PDF
    In this paper, a novel region growing impulse noise estimator for color images is proposed. The aim of this estimator is to distinguish noisy pixels from uncorrupted pixels and subsequently measure the noise proportion efficiently. We use a region growing technique to segment the images into clusters of pixels and propose an adaptive decision scheme to measure the noise proportion. Performance analyses show the proposed scheme outperforms some of the state-of-the art techniques

    Development of a gas absorption heat pump for residential applications

    Get PDF
    Thermally Driven Heat Pumps represent an option to reduce the energy consumption for space heating and domestic hot water in hard-to-decarbonize buildings without impacting the electrical grid and utilizing the current and future gaseous energy vectors with high efficiency. Ariston Group and Politecnico di Milano developed a gas absorption heat pump for the residential market, exploiting design and manufacturing solutions to enable large-scale production and introducing technical features to assure high performance over the entire working range. In particular, the use of a variable restrictor setup coupled with a patented solution, called “booster”, can reduce the temperature of the generator at high load and high lift conditions, enabling the heat pump to provide the nominal capacity from -22 °C to +40 °C of outdoor air temperature, with supply temperature up to 70 °C. Moreover, coupled with a specifically designed combustion system, the heat pump can modulate at 1:6 ratio of its nominal capacity. This feature makes it possible to maintain high efficiency also at part load conditions, avoiding the on-off operation and making redundant the installation of inertial buffer. Additionally, an innovative strategy to perform the defrosting of the air-sourced heat exchanger without the need of acting on the thermodynamic cycle has been developed. This allows defrosting operations extremely fast, while offering an almost negligible effect on the heat pump performance and substantially no interruption to the heating service and contributing to the elimination of the need to install an inertial buffer. The thermodynamic core of the appliance was built targeting large scale production. It allows for high specific capacity (kg/kW) and a small footprint (m2/kW) with the ability to serve nominal capacities ranging from 8 to 15 kW based on the configurations. Laboratory test to assess the performances based on the European Standard EN 12309 returned a seasonal gas utilization efficiency on the net calorific of 1.50, a seasonal primary energy ratio of 1.27, and extremely low electrical consumption for the auxiliaries

    Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology

    Get PDF
    We present new fission-track and (U–Th)/He data from apatite and zircon in order to reconstruct the exhumation of the Sierra de Cameros, in the northwestern part of Iberian Range, Spain. Zircon fission-track ages from samples from the depocentre of the basin were reset during the metamorphic peak at approximately 100 Ma. Detrital apatites from the uppermost sediments retain fission-track age information that is older than the sediment deposition age, indicating that these rocks have not exceeded 110 8C. Apatites from deeper in the stratigraphic sequence of the central part of the basin have fission-track ages of around 40 Ma, significantly younger than the stratigraphic age, recording the time of cooling after peak metamorphic conditions. Apatite (U–Th)/He ages in samples from these sediments are 31–40 Ma and record the last period of cooling during Alpine compression. The modelled thermal history derived from the uppermost sediments indicates that the thermal pulse associated with peak metamorphism was rapid, and that the region has cooled continuously to the present. The estimated palaeogeothermal gradient is around 86 8C km21 and supports a tectonic model with a thick sedimentary fill (c. 8 km) and explains the origin of the low-grade metamorphism observed in the oldest sediments

    Kinetic modeling and simulation of high-temperature by-product formation from urea decomposition

    Get PDF
    The Selective catalytic reduction (SCR) technique is widely applied in exhaust gas after-treatment of diesel engines. Depending on operating conditions, injected urea-water solution (UWS) can form liquid films on mixer blades and the pipe wall. Evaporation and subsequent reactions in the wall film can lead to deposits of urea and by-products, respectively. Especially deposits that are not decomposed up to high temperatures are challenging for the SCR technique. Thermogravimetric experiments are conducted for these stable urea by-products, such as ammelide, ammeline and their by-products, such as cyanamide or melamine. An analysis of the evolving gases during thermal decomposition led to a more detailed understanding of the kinetics. The postulated mechanism is able to predict the thermogravimetric analyses results and the effects of variation of the experimental conditions such as initial sample mass and heating rates. The evaluated kinetics, together with the recently developed kinetics for the urea/biuret/triuret/cyanuric acid system Tischer et al. (2019), can now be integrated into CFD simulations of SCR systems to numerically simulate all relevant physical and chemical processes in UWS equipped aftertreatment systems for a wide range of conditions

    Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction

    Get PDF
    Carbon-free and sustainable energy storage solutions are required to mitigate climate change. One possible solution, especially for stationary applications, could be the storage of energy in metal fuels. Energy can be stored through reduction of the oxide with green hydrogen and be released by combustion. In this work a feasibility study for iron as possible metal fuel considering the complete energy cycle is conducted. On the basis of equilibrium calculations it could be shown that the power-to-power efficiency of the iron/iron oxide cycle is 27 %. As technology development requires a more detailed description of both the reduction and the oxidation, a first outlook is given on the kinetic analysis of the reduction of iron oxides with hydrogen. Thermogravimetric experiments using Fe2_2O3_3, Fe3_3O4_4 and FeO indicate a three-step process for the reduction. The maximum reduction rate can be achieved with a hydrogen content of 25 %. Based on the experimental results a reaction mechanism and accompanied kinetic data were developed for description of Fe2_2O3_3 reduction with H2_2 under varying experimental conditions
    • …
    corecore