314 research outputs found

    The anti-apoptotic factor Bcl-2 can functionally substitute for the B cell survival but not for the marginal zone B cell differentiation activity of BAFF.

    Get PDF
    The TNF family ligand B cell-activating factor (BAFF, BLyS, TALL-1) is an essential factor for B cell development. BAFF binds to three receptors, BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA), but only BAFF-R is required for successful survival and maturation of splenic B cells. To test whether the effect of BAFF is due to the up-regulation of anti-apoptotic factors, TACI-Ig-transgenic mice, in which BAFF function is inhibited, were crossed with transgenic mice expressing FLICE-inhibitory protein (FLIP) or Bcl-2 in the B cell compartment. FLIP expression did not rescue B cells, while enforced Bcl-2 expression restored peripheral B cells and the ability to mount T-dependent antibody responses. However, many B cells retained immaturity markers and failed to express normal amounts of CD21. Marginal zone B cells were not restored and the T-independent IgG3, but not IgM, response was impaired in the TACI-IgxBcl-2 mice. These results suggest that BAFF is required not only to inhibit apoptosis of maturating B cells, but also to promote differentiation events, in particular those leading to the generation of marginal zone B cells

    Understanding Iodine Chemistry Over the Northern and Equatorial Indian Ocean

    Get PDF
    Observations of halogen oxides, ozone, meteorological parameters, and physical and biogeochemical water column measurements were made in the Indian Ocean and its marine boundary layer as a part of the Second International Indian Ocean Expedition (IIOE-2). The expedition took place on board the oceanographic research vessel Sagar Nidhi during 4–22 December 2015 from Goa, India, to Port Louis, Mauritius. Observations of mixed layer depth, averaged temperature, salinity, and nitrate concentrations were used to calculate predicted iodide concentrations in the seawater. The inorganic iodine ocean-atmosphere flux (hypoiodous acid [HOI] and molecular iodine [I2]) was computed using the predicted iodide concentrations, measured atmospheric ozone, and wind speed. Iodine oxide (IO) mixing ratios peaked at 0.47 ± 0.29 pptv (parts per trillion by volume) in the remote open ocean environment. The estimated iodide concentrations and HOI and I2 fluxes peaked at 200/500 nM, 410/680 nmol·m−2·day−1, and 20/80 nmol·m−2·day−1, respectively, depending on the parameterization used. The calculated fluxes for HOI and I2 were higher closer to the Indian subcontinent; however, atmospheric IO was only observed above the detection limit in the remote open ocean environment. We use NO2 observations to show that titration of IO by NO2 is the main reason for this result. These observations show that inorganic iodine fluxes and atmospheric IO show similar trends in the Indian Ocean marine boundary layer, but the impact of inorganic iodine emissions on iodine chemistry is buffered in elevated NOx environments, even though the estimated oceanic iodine fluxes are higher

    Pulmonary vasoconstrictor action of KCNQ potassium channel blockers

    Get PDF
    KCNQ channels have been widely studied in the nervous system, heart and inner ear, where they have important physiological functions. Recent reports indicate that KCNQ channels may also be expressed in portal vein where they are suggested to influence spontaneous contractile activity. The biophysical properties of K+ currents mediated by KCNQ channels resemble a current underlying the resting K+ conductance and resting potential of pulmonary artery smooth muscle cells. We therefore investigated a possible role of KCNQ channels in regulating the function of pulmonary arteries by determining the ability of the selective KCNQ channel blockers, linopirdine and XE991, to promote pulmonary vasoconstriction. Linopirdine and XE991 both contracted rat and mouse pulmonary arteries but had little effect on mesenteric arteries. In each case the maximum contraction was almost as large as the response to 50 mM K+. Linopirdine had an EC50 of around 1 μM and XE991 was almost 10-fold more potent. Neither removal of the endothelium nor exposure to phentolamine or α,β-methylene ATP, to block α1-adrenoceptors or P2X receptors, respectively, affected the contraction. Contraction was abolished in Ca2+-free solution and in the presence of 1 μM nifedipine or 10 μM levcromakalim

    Le référentiel taxonomique Florical et les caractéristiques de la flore vasculaire indigène de la Nouvelle-Calédonie

    Get PDF
    The taxonomic reference base Florical and characteristics of the native vascular flora of New Caledonia. The floristic inventory presented here comprises the evolving computerised database Florical (http://www.botanique.nc/herbier/florical). As of the date of publication, it lists all native vascular plant species (as well as infraspecific taxa) present in the territory of New Caledonia, whether validly published or in press, along with their basionym, organised according to the most recent classifications systems (APG III 2009 for the angiosperms, Smith et at [2006] for the ferns and lycophytes, and Mabberley [2009] for the gymnosperms), accompanied by their status (native or endemic) and the various vegetation types in which they occur. After a brief historical review of our knowledge of New Caledonian botany, the characteristics (richness, composition and endemism) of the different taxonomic groups (ferns and lycophytes, gymnosperms and then angiosperms -mono- and dicotyledons) are analyzed, followed by an assessment of the distribution of these groups among the vegetation types. The vascular flora of New Caledonia is characterised by its high level of richness (3371 species, including 3099 for the flowering plants alone), despite the absence or under-representation of some taxa that are abundantly represented elsewhere in the tropics, and especially by its remarkable distinctiveness (with endemism at the species level reaching 74,7%, and 77.8% for the flowering plants). The flora stands out by the presence of several relictual taxa and a high level of speciation among certain groups, despite the fact that the island was re-colonised relatively recently following the total submersion of its much older basement during the Paleocene and the Oligocene. Details of the measures taken to conserve this extraordinary natural heritage show that only 3.4% of the territory's total surface area is effectively protected. Despite the undeniable progress made in recent years by the authorities concerned, significant work remains to be done, especially in the northern Province

    A machine learning based global sea-surface iodide distribution

    Get PDF
    Iodide in the sea-surface plays an important role in the Earth system. It modulates the oxidising capacity of the troposphere and provides iodine to terrestrial ecosystems. However, our understanding of its distribution is limited due to a paucity of observations. Previous efforts to generate global distributions have generally fitted sea-surface iodide observations to relatively simple functions using proxies for iodide such as nitrate and sea-surface temperature. This approach fails to account for coastal influences and variation in the bio-geochemical environment. Here we use a machine learning regression approach (random forest regression) to generate a high-resolution (0:125° × 0:125°, ∼ 12:5km × 12:5km), monthly dataset of present-day global sea-surface iodide. We use a compilation of iodide observations (1967-2018) that has a 45 % larger sample size than has been used previously as the dependent variable and co-located ancillary parameters (temperature, nitrate, phosphate, salinity, shortwave radiation, topographic depth, mixed layer depth, and chlorophyll a) from global climatologies as the independent variables. We investigate the regression models generated using different combinations of ancillary parameters and select the 10 best-performing models to be included in an ensemble prediction. We then use this ensemble of models, combined with global fields of the ancillary parameters, to predict new high-resolution monthly global sea-surface iodide fields representing the present day. Sea-surface temperature is the most important variable in all 10 models. We estimate a global average sea-surface iodide concentration of 106 nM (with an uncertainty of ∼ 20 %), which is within the range of previous estimates (60-130 nM). Similar to previous work, higher concentrations are predicted for the tropics than for the extra-tropics. Unlike the previous parameterisations, higher concentrations are also predicted for shallow areas such as coastal regions and the South China Sea. Compared to previous work, the new parameterisation better captures observed variability. The iodide concentrations calculated here are significantly higher (40 % on a global basis) than the commonly used MacDonald et al. (2014) parameterisation, with implications for our understanding of iodine in the atmosphere. We envisage these fields could be used to represent present-day sea-surface iodide concentrations, in applications such as climate and air-quality modelling. The global iodide dataset is made freely available to the community (https://doi.org/10/gfv5v3, Sherwen et al., 2019), and as new observations are made, we will update the global dataset through a "living data" model

    Influence of the Sea Surface Microlayer on Oceanic Iodine Emissions

    Get PDF
    The influence of organic compounds on iodine (I2) emissions from the O3 + I- reaction at the sea surface was investigated in laboratory and modeling studies using artificial solutions, natural subsurface seawater (SSW), and, for the first time, samples of the surface microlayer (SML). Gas-phase I2 was measured directly above the surface of liquid samples using broadband cavity enhanced absorption spectroscopy. I2 emissions were consistently lower for artificial seawater (AS) than buffered potassium iodide (KI) solutions. Natural seawater samples showed the strongest reduction of I2 emissions compared to artificial solutions with equivalent [I-], and the reduction was more pronounced over SML than SSW. Emissions of volatile organic iodine (VOI) were highest from SML samples but remained a negligible fraction (<1%) of the total iodine flux. Therefore, reduced iodine emissions from natural seawater cannot be explained by chemical losses of I2 or hypoiodous acid (HOI), leading to VOI. An interfacial model explains this reduction by increased solubility of the I2 product in the organic-rich interfacial layer of seawater. Our results highlight the importance of using environmentally representative concentrations in studies of the O3 + I- reaction and demonstrate the influence the SML exerts on emissions of iodine and potentially other volatile species
    corecore