2,423 research outputs found

    Expression and Purification of the Central Domain from Vitronectin

    Get PDF

    How Farmers Bid Into the Conservation Reserve Program: An Empirical Analysis of CRP Offers Data

    Get PDF
    Replaced with revised version of paper 07/19/11.Land Economics/Use,

    Membranoproliferative Glomerulonephritis

    Get PDF

    The ocean's saltiness and its overturning

    Get PDF
    Here we explore the relationship between the mean salinity urn:x-wiley:grl:media:grl55555:grl55555-math-0001 of the ocean and the strength of its Atlantic and Pacific Meridional Overturning Circulations (AMOC and PMOC). We compare simulations performed with a realistically configured coarse‐grained ocean model, spanning a range of mean salinities. We find that the AMOC strength increases approximately linearly with urn:x-wiley:grl:media:grl55555:grl55555-math-0002. In contrast, the PMOC strength declines approximately linearly with urn:x-wiley:grl:media:grl55555:grl55555-math-0003 until it reaches a small background value similar to the present‐day ocean. Well‐established scaling laws for the overturning circulation explain both of these dependencies on urn:x-wiley:grl:media:grl55555:grl55555-math-0004

    Spacecraft-spacecraft radio-metric tracking: Signal acquisition requirements and application to Mars approach navigation

    Get PDF
    Doppler and ranging measurements between spacecraft can be obtained only when the ratio of the total received signal power to noise power density (P(sub t)/N(sub 0)) at the receiving spacecraft is sufficiently large that reliable signal detection can be achieved within a reasonable time period. In this article, the requirement on P(sub t)/N(sub 0) for reliable carrier signal detection is calculated as a function of various system parameters, including characteristics of the spacecraft computing hardware and a priori uncertainty in spacecraft-spacecraft relative velocity and acceleration. Also calculated is the P(sub t)/N(sub 0) requirements for reliable detection of a ranging signal, consisting of a carrier with pseudonoise (PN) phase modulation. Once the P(sub t)/N(sub 0) requirement is determined, then for a given set of assumed spacecraft telecommunication characteristics (transmitted signal power, antenna gains, and receiver noise temperatures) it is possible to calculate the maximum range at which a carrier signal or ranging signal may be acquired. For example, if a Mars lander and a spacecraft approaching Mars are each equipped with 1-m-diameter antennas, the transmitted power is 5 W, and the receiver noise temperatures are 350 K, then S-band carrier signal acquisition can be achieved at ranges exceeding 10 million km. An error covariance analysis illustrates the utility of in situ Doppler and ranging measurements for Mars approach navigation. Covariance analysis results indicate that navigation accuracies of a few km can be achieved with either data type. The analysis also illustrates dependency of the achievable accuracy on the approach trajectory velocity
    • 

    corecore