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The ocean’s saltiness and its overturning
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Abstract Here we explore the relationship between the mean salinity S̄ of the ocean and the strength
of its Atlantic and Pacific Meridional Overturning Circulations (AMOC and PMOC). We compare simulations
performed with a realistically configured coarse-grained ocean model, spanning a range of mean salinities.
We find that the AMOC strength increases approximately linearly with S̄. In contrast, the PMOC strength
declines approximately linearly with S̄ until it reaches a small background value similar to the present-day
ocean. Well-established scaling laws for the overturning circulation explain both of these dependencies
on S̄.

1. Introduction

The Atlantic meridional overturning circulation (AMOC) transports cold water masses formed through con-
vection in the North Atlantic southward at depth, balanced by a northward resupply of warm surface waters
[Wolfe and Cessi, 2014]; no such circulation exists in the Pacific, but paleoevidence suggests that deep water
formation has occurred in the North Pacific in the past [Okazaki et al., 2010]. The asymmetry in overturning
between these two basins has been the subject of extensive research because of its important consequences
for ocean circulation and the transport of heat and carbon [Vallis, 2012] and is usually attributed to interbasin
differences in evaporation/precipitation [Warren, 1983; Emile-Geay et al., 2003; Nilsson et al., 2011], though
there is no consensus as to why deep water formation is only seen in the Atlantic. Here we investigate the role
of mean salinity on this overturning asymmetry. Mean salinity may have an impact because salinity affects
the density-temperature relationship [Roquet et al., 2015], because seawater density is sensitive to salinity at
high latitudes where T ≈ 0∘C [Timmermans and Jayne, 2016] and because salinity variations scale with mean
salinity [Cullum et al., 2016] as salinity variations are due to evaporation, precipitation, and other water
injection/removal events rather than direct input of salts.

We approach the relationship between ocean mean salinity and the MOCs in the spirit of a geophysical fluid
dynamics problem, exploring the dependency of their strengths on the mean salinity through a range of
mean salinities. This dependency may have relevance for past climates; paleoevidence suggests that the
mean salinity of the world ocean has varied widely on geological timescales, due both to large-scale extrac-
tion of water to form ice sheets and to changes in the total salt content from imbalances in salt deposit and
extraction [Hay et al., 2006]. Salinity during Snowball Earth has recently been shown to dominate the density
structure, in part because the mean salinity, expected to have exceeded 50 g/kg as prescribed in the simula-
tions, would have caused enhanced density variations [Jansen, 2016]. Simulations of an ocean in an idealized
configuration suggested that inclusion of salinity increases the strength of the MOC [Wolfe and Cessi, 2014].
The combination of this geological and simulation evidence suggests the mean salinity affects and possibly
has affected circulation patterns in the ocean’s past, but the dependence of ocean circulation features on the
mean salinity has not been explored. Additionally, this dependency may have relevance for exoplanet cir-
culations; changing the mean salinity in box models has been shown to change meridional heat transport
because different circulation patterns can emerge, with hypothesized implications for exoplanet habitability
[Cullum et al., 2016].

We also note that transient sensitivity simulations in a coupled ocean-atmosphere model where an additional
35 g/kg of salt was added uniformly to the ocean showed a ∼1/2∘C increase in globally averaged sea surface
temperature and a temporarily weakened AMOC [Williams et al., 2010]. However, here we are interested in
equilibrium responses of the overturning circulation; caution should be taken not to conflate transient and
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equilibrium MOC responses to perturbations, which can often be in opposite directions [e.g., Stouffer and
Manabe, 2003].

We perform a suite of experiments with a coarse-grained, but realistic, ocean model, compare the resulting
MOC strengths at equilibrium and evaluate the relationship between mean salinity and MOC strength using
simple physical arguments. We find that the AMOC strengthens and the analogous upper overturning cell
in the Pacific (Pacific Meridional Overturning Circulations, PMOC) weakens with increasing S̄ and that these
dependencies are consistent with the predominant theory for the overturning circulation [Nikurashin and
Vallis, 2012; Wolfe and Cessi, 2014]. We also analyze the effect of implementing lower-order equations of state
for a simulation with the present-day mean salinity and a simulation with S̄ = 0.

2. Materials and Methods
2.1. Numerical Model
As analytical solutions of the equations governing oceanic flow are not available for realistic ocean geome-
tries, and comprehensive observations are only available for the ocean at its present-day salinity, numerical
simulations are required to study the dependency of the AMOC and PMOC on the ocean’s mean salinity. We
use the letter 𝜉 to represent ratio of the mean salinity of a given simulation with the present-day ocean mean
salinity of S̄ ≈ 34.7 g/kg [Wunsch, 2014]; i.e., 𝜉 ∶= S̄∕34.7. For these numerical experiments, we use a global
rigid lid configuration of the Massachusetts Institute of Technology General Circulation Model (MITgcm)
[Marshall et al., 1997] at 2.8∘ horizontal resolution with 15 nonuniform vertical levels. Global realistic ocean
bathymetry is derived from Sloss [1988]. The mesoscale eddy field is parameterized by using the Gent and
McWilliams [1990] scheme with an eddy diffusivity of 1000 m2/s and a diapycnal diffusivity of 5 × 10−5 m2/s.
Momentum is dissipated using a Laplacian viscosity with horizontal coefficient of 5 × 105 m2/s and a verti-
cal coefficient of 1 × 10−3 m2/s. Tracers are advected using a flux-limited second-moment scheme. Enhanced
mixing at boundary layers and in low stratification is implemented using a 𝜅 profile parameterization mixing
scheme [Large et al., 1994]. Wind stress forcing is taken from Trenberth et al. [1989]. Heat fluxes are imposed
by restoring to a monthly varying effective atmospheric temperature as suggested by Haney [1971], on a
timescale of 60 days over 25 m (see Figure S1b in the supporting information) [Levitus and Boyer, 1994b].
Freshwater forcing is imposed as a relaxation to a prescribed, monthly varying sea surface salinity field [Levitus
and Boyer, 1994a] (see Figure S1a) on a 90 day timescale over 25 m, rather than as an evaporation-precipitation
flux, to avoid model drift. The model time step is 12 h. All experiments described below are run to equilibrium,
and diagnostics are then computed for the last century of model output.

2.2. Reference Simulation and Overturning Stream Function
The equilibrium state of the reference experiment (experiment a in Table 1; see below) mirrors the large-scale
time-mean circulation patterns of the present-day ocean (see Figure S2), with a comparable vertical structure,
midlatitude gyres in each basin with tens of Sverdrup (Sv) of transport, and a strong Antarctic Circumpolar
Current with∼150 Sv transport through the Drake Passage, consistent with observations [Wunsch, 2014; Gille,
2003]. To quantify the overturning circulation for this and other experiments, we introduce the overturning
stream function.

The overturning stream functions 𝜓A and 𝜓P , in units of Sverdrups (1 Sv = 106 m3/s), represent each basin’s
zonally integrated net volume transport as an integral [Wunsch, 2014]. They are defined here such that

V(y, z) + VGM(y, z) = −𝜕z𝜓A,P(y, z),

W(y, z) + WGM(y, z) = 𝜕y𝜓A,P(y, z),

where capital letters on the left-hand side are zonal integrals of meridional velocity v, vertical velocity w,
and the Gent-McWilliams eddy-induced transport velocities vGM and wGM [McWilliams, 2006], over the zonal
extents of the Atlantic and Indo-Pacific basins (for the respective subscripts ⋅A, ⋅P) at latitude y and depth z. For
each experiment described below, 𝜓A and 𝜓P are computed for the time-averaged velocity field for the last
century of model output. The positive maxima of 𝜓A and 𝜓P (north of 30∘ N, to avoid the large upper ocean
wind-driven cells in the subtropics), which represent clockwise circulations, serve as metrics for the strength
of the AMOC and PMOC.

The overturning stream functions 𝜓A,P from the reference experiment also mirror the structure and
magnitude of the overturning circulation in the present-day ocean as estimated by Lumpkin and Speer [2007]
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Table 1. Description of Experiments: Simulation
Letter Designation, Ratio of Mean Salinity for the
Simulation to That of the Reference Experiment (𝜉),
and Equation of State (EoS)

Letter 𝜉 EoS

a 1 polynomial

b 0 polynomial

c 1/15 polynomial

d 1/6 polynomial

e 1/3 polynomial

f 2/3 polynomial

g 3/2 polynomial

h 3 polynomial

i 1 JMD95Z

j 1 linear

k 0 quadratic

(see Figure S3a). In the Atlantic, a clockwise AMOC circula-
tion of 19 Sv is confined to the upper ∼2 km, with convec-
tion occurring at the highest Atlantic latitudes. A weaker
12 Sv counterclockwise circulation associated to convec-
tion around Antarctica can be seen below the AMOC. This
two-cell zonally averaged circulation compares well with
observations [Lumpkin and Speer, 2007; Talley, 2013].

The PMOC is far weaker at 3 Sv and largely confined to
the upper kilometer of the Pacific, also comparable to
observations [Talley, 2013].

2.3. Experiments
Eleven experiments were conducted using the numeri-
cal model described above; see Table 1. Collectively, the
suite of experiments tests for the dependence of AMOC
and PMOC strength on ocean mean salinity and on the
adequacy of lower-order equations of state to reproduce
large-scale features of the ocean circulation in present-day
conditions and the zero-salt limit. Experiment a serves as

a reference experiment, using realistic salinity forcing and a nonlinear equation of state which is an accurate
10-term Taylor expansion about the mean (S, T , and P) at each depth level [Bryan and Cox, 1972]. Experiments
b–h are identical to a except that the salinity initial conditions and surface forcing are multiplied by a constant
factor 𝜉 between 0 and 3. Salinity is shifted in this way to maintain relative salinity differences while changing
the mean salinity [Cullum et al., 2016].

Experiment i replicates experiment a but uses a different nonlinear equation of state with 12 terms per depth
level, to verify that results are not sensitive to the specific implementation of equation of state nonlinearities
[Jackett and McDougall, 1995]. Experiment j approximates the equation of state in experiment a with a lin-
earization about the mean salinity and temperature of the equilibrated state of experiment a, resulting in a
constant temperature expansion coefficient of 𝛼 = 1.47 × 10−4∘C−1 and a constant saline density coefficient
[Wunsch, 2014] of 𝛽 = 7.50 × 10−4 kg/g, to test the adequacy of a linear equation of state to reproduce
large-scale ocean circulation patterns in a model configured as above and approximating present-day ocean
conditions.

Investigating the habitability of exoplanets, Cullum et al. [2016] used a box model to test for the impact
of mean salinity on an idealized ocean circulation. As freshwater at surface pressure has a nearly quadratic
equation of state with respect to temperature, they used a quadratic function for 𝜌(T) to test the case
where S̄ = 0. This formulation may not be appropriate for freshwater in an ocean interior, however, where
thermobaric terms become important (see Figure S4). Thus, to test for the impact of these thermobaric
terms on large-scale circulation patterns in the S̄ = 0 case, experiment k uses a quadratic equation of state
𝜌 = 𝜌o + 𝛼1T − 𝛼2T 2, with 𝜌o = 999.9 kg m−3, 𝛼1 = 0.044 kg m−3∘C−1, and 𝛼2 = 0.0054 kg m−3∘C−2, which is a
highly accurate approximation of the density-temperature relationship at zero salinity and atmospheric pres-
sure across the full range of ocean surface temperatures (root-mean-square error (RMSE) = 0.0165 kg m−3)
but neglects thermobaric terms.

3. Results
3.1. MOC’s Dependence on 𝝃

We compare positive maxima of𝜓A and𝜓P for experiments a–h in Figure 1. The AMOC strength (maximum of
𝜓A) increases monotonically with 𝜉. The AMOC-𝜉 relationship is approximately linear (max{𝜓A} ≈ 6.7𝜉+13 Sv;
r2 = 0.988; and RMSE = 0.8) , such that in the zero-salinity limit the AMOC weakens to 13 Sv of transport and
increases by 6.7 Sv for each unit increase of 𝜉; equivalently, the AMOC strength increases by 0.19 Sv for each
unit increase (in g/kg) of S̄.

The linear increase of 𝜓A with 𝜉 is consistent with general theory for the strength of the AMOC and with
simulations in idealized ocean configurations. For an adiabatically dominated overturning such as the AMOC,
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Figure 1. Basin overturning stream function maxima as a function of the
ratio of mean salinity (𝜉) for simulations a–h. Black dashed and dotted
lines correspond to Atlantic and Pacific MOC’s, respectively. Red dashed
and dotted lines are estimated linear relationships (max𝜓A ≈ 6.7𝜉 + 13,
r2 = 0.988, and RMSE = 0.8, and for 𝜉 ≤ 1, max𝜓P ≈ 18 − 15𝜉, r2 = 0.996,
and RMSE = 0.4).

the strength Ψ is thought to be pro-
portional to the “isopycnal window”
Δb, the range of buoyancy over which
convection occurs, according to the
scaling

Ψ ∼ h2Δb
f

,

where h is the depth scale for the
overturning and f is the Coriolis
parameter at high northern latitudes
[Nikurashin and Vallis, 2012; Wolfe
and Cessi, 2014]. The partitioning of
Atlantic waters between the AMOC
cell and the abyssal Atlantic circula-
tion associated to convection around
Antarctica remains fixed across these
experiments, keeping h roughly con-
stant. However, the Δb changes across
the experiments because the range of

salinity over which convection occurs, ΔS, increases with the mean salinity. The ∼7 Sv increase in Ψ per unit
increase in 𝜉 seen in the experiments is also predictable from the above scaling. If we take from the reference
simulation ΔS ∼ 0.1 g/kg, and take the depth of the positive 𝜓A maximum for h ∼ 1 km, given the character-
istic magnitudes 𝛽 ∼ 7 × 10−4 kg/g, g ∼ 10 m/s2, and f ∼ 10−4 s−1, the change (𝛿Ψ) in Ψ from a unit change
(𝛿𝜉 = 1) in 𝜉 should be

Ψ ∼ h2Δb
f

−→ 𝛿Ψ ∼
h2 g 𝛽 ΔS

f
𝛿𝜉 ∼ 7 Sv.

In contrast, PMOC strength (maximum of 𝜓P) decreases monotonically with 𝜉. The PMOC strength increases
to 18.4 Sv in the zero-salinity limit and decreases to 1.8 Sv when 𝜉 = 3. For 𝜉 > 1; the PMOC effectively
vanishes to a small background value, but when 𝜉 ≤ 1, the PMOC-𝜉 relationship is approximately linear
(max𝜓P ≈ 18 − 15 𝜉; r2 = 0.996; and RMSE = 0.4).

The PMOC behavior can be interpreted within the same scaling framework given for the AMOC. Even though
the North Pacific experiences cold temperatures, it exhibits and is stratified by a persistent halocline [Gargett,
1991]. Decreasing mean salinity weakens this halocline because freshwater fluxes result in proportionately
weaker buoyancy fluxes, thus a weaker stratification. Weaker stratification from a sufficiently decreased S̄
can allow enhanced convection across a range of isopycnals, thus increasing Δb. In contrast, when S̄ is large
enough to shut down convection in the North Pacific via a strong enough halocline, Δb vanishes, and any
clockwise PMOC associated with high-latitude convection must be balanced by a diffusive upwelling within
the basin. In the above scaling framework, this diffusive upwelling scales as Ψ ∼ 𝜅∕h, where 𝜅 is the ver-
tical diffusivity and  is the area of the basin [Munk, 1966]. Such scalings typically produce Ψ estimates on
the order of a few Sverdrups [Nikurashin and Vallis, 2012], consistent with observations [Talley, 2013] and the
𝜉 ≥ 1 experiments.

3.2. Lower-Order Equations of State
We compare experiments a, i, and j to test the importance of nonlinearities in the equation of state for the case
when 𝜉 = 1. The AMOC and PMOC for experiments a and i are effectively indistinguishable, with an AMOC
maximum of 18.8 Sv and a PMOC maximum of 2.9 Sv for both experiments, and nearly identical structure
both meridionally and in depth (see Figures S3a and S3i). This suggests that the particular representation of
equation of state nonlinearities does not affect these overturnings. Interestingly, the AMOC and PMOC for
experiments a and j are also nearly indistinguishable; experiment j has an AMOC maximum of 19.7 Sv and a
PMOC maximum of 2.4 Sv, and moreover, the overall structure of both MOCs are strikingly similar between the
two experiments (see Figures S3a and S3j). The quantitative differences in AMOC and PMOC strength between
experiments a and j are smaller than present measurement uncertainties for the strength of each circulation
[Talley et al., 2003].
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Even though the equilibrium dynamics of these experiments are similar, substantial quantitative differences
exist in the distribution of temperature and salinity between the two (see Figure S5); the most abundant water
mass in experiment j has a salinity of ∼0.26 g/kg lower than that of experiment a and a potential tempera-
ture of ∼1.8∘C lower. These quantitative differences are consistent with those found by Roquet et al. [2015],
who found that changing from a nonlinear equation of state to a linear one in their simulations produced
a mean salinity change of −0.2 g/kg and a mean temperature change of −1.9∘C. This suggests that for the
present-day ocean mean salinity, i.e., 𝜉 = 1, while nonlinearities in the equation of state may not be neces-
sary to approximate the AMOC or PMOC, the water mass distributions and the characteristics of the waters
advected by these circulations are affected by these nonlinearities [Nycander et al., 2015].

We also compare experiments b and k to test the importance of nonlinearities in the equation of state other
than the temperature-quadratic term 𝛼2 for the case when 𝜉 = S̄ = 0. Experiment k produces a substan-
tially weaker AMOC than experiment b, 6.7 Sv versus 13.0 Sv. Additionally, the PMOC in experiment k is
structured entirely differently, extending down to the ocean bottom, whereas in all other experiments the
PMOC is confined to the upper ∼2 km (see Figures S3b and S3k). Experiment k also produces a substan-
tially weaker Antarctic Circumpolar Current, with 68 Sv of transport through the Drake Passage; experiments
a– j all produces similar Drake Passage transports of ∼150 Sv, consistent with observations [Gille, 2003].
This suggests that an equation of state neglecting thermobaric effects is insufficient to approximate accu-
rately large-scale circulation features in the limit of zero salinity. In the present-day ocean, thermobaric
effects are thought to play an important role in high latitude convection [Oliver and Tailleux, 2013; Adkins
et al., 2005]. For freshwater, the density-temperature relationship changes with increasing pressure, strik-
ingly similar to the effect of increasing salinity for saltwater at surface pressure (see Figure S4). Increasing
pressure has a nearly equivalent impact on the density-temperature relationship as increasing salinity, as
both weaken the influence of hydrogen bonding at low temperatures and thus the freshwater density max-
imum at 4∘C [Thurman, 1988]. Figure S4 demonstrates that when 𝜉 = 0, a quadratic equation of state is
only accurate for surface waters. As the MOC is a property of the ocean interior, spurious overturnings are
likely to result from simulations neglecting thermobaric terms by using a quadratic equation of state for
the 𝜉 = 0 case.

4. Discussion

We have used numerical simulations to explore the dependence of the overturning circulation on the ocean’s
mean salinity. The AMOC increases linearly with mean salinity, while the PMOC decreases linearly until it
asymptotes to a small background value. Increasing S̄ results in opposite effects on the two overturnings. This
is because in the Atlantic an increase in mean salinity leads to an increased isopycnal window Δb, whereas in
the Pacific an increase in mean salinity leads to a stronger halocline and thus a smaller isopycnal window due
to the shutdown of convection.

The similarity between experiments a and j indicates that a linear equation of state is sufficient in a model
configured as above to approximate the large-scale time-mean circulation accurately, well within current
measurement uncertainty [Talley et al., 2003], but that equation of state nonlinearities affect water mass char-
acteristics. This is likely dependent on model configuration, and we note that a linear equation of state is
unlikely to capture regional circulations in uniformly low-temperature oceans accurately [Timmermans and
Jayne, 2016].

The model used herein is not an appropriate candidate to investigate precise, quantitative differences result-
ing from changes in mean salinity. A higher-resolution, coupled atmosphere-ice-ocean model is necessary to
fully capture the effects of mean salinity and varied equations of state on the ocean circulation and water mass
distribution [Roquet et al., 2015]. All such models are approximate integrals of partial differential equations
subject to a series of strong assumptions. However, as the model reproduces qualitative features of the cir-
culation for multiple equations of state, and simple physical arguments can explain the difference between
experiments, the model becomes a compelling tool to illustrate the qualitative influence of a mean salin-
ity for the overturning. A key objective of physical oceanography and geophysical fluid dynamics alike is to
understand what underlies oceanic movement [McWilliams, 2006; Wunsch, 2014]. Here we have shown that
the mean salinity of the ocean is a constraint on the strength of its overturning cells.
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