4,538 research outputs found

    Variations on Negative Stain Electron Microscopy Methods: Tools for Tackling Challenging Systems.

    Get PDF
    Negative stain electron microscopy (EM) allows relatively simple and quick observation of macromolecules and macromolecular complexes through the use of contrast enhancing stain reagent. Although limited in resolution to a maximum of ~18 - 20 Ã…, negative stain EM is useful for a variety of biological problems and also provides a rapid means of assessing samples for cryo-electron microscopy (cryo-EM). The negative stain workflow is straightforward method; the sample is adsorbed onto a substrate, then a stain is applied, blotted, and dried to produce a thin layer of electron dense stain in which the particles are embedded. Individual samples can, however, behave in markedly different ways under varying staining conditions. This has led to the development of a large variety of substrate preparation techniques, negative staining reagents, and grid washing and blotting techniques. Determining the most appropriate technique for each individual sample must be done on a case-by-case basis and a microscopist must have access to a variety of different techniques to achieve the highest-quality negative stain results. Detailed protocols for two different substrate preparation methods and three different blotting techniques are provided, and an example of a sample that shows markedly different results depending on the method used is shown. In addition, the preparation of some common negative staining reagents, and two novel Lanthanide-based stains, is described with discussion regarding the use of each

    Alginate inhibits iron absorption from ferrous gluconate in a randomized controlled trial and reduces iron uptake into Caco-2 cells

    Get PDF
    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n=15) were given a test meal of 200g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p=0.003). Sub-group B (n=9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p=0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p=0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p=0.009) and 35% (p=0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification

    Crack Length Determination by Ultrasonic Methods

    Get PDF
    Accurate calculation of the stress intensity factor on a given component under load relies on an accurate size determination of the flaws present in the component. The challenge to the NDE community has been development of reliable techniques to provide that accurate size determination. Many research groups have investigated this problem using ultrasonic methods with summaries of their techniques and results provided by various authors [1–3]. In general, the techniques developed fall into three general categories; (1) determination of crack length from signal amplitude measurements, (2) determination of crack length from time-of-flight measurements, and (3) determination of crack length using diffracted waves. Sketches of representative techniques in each category are shown in Figure 1

    Structure of the protective nematode protease complex H-gal-GP and its conservation across roundworm parasites

    Get PDF
    Roundworm parasite infections are a major cause of human and livestock disease worldwide and a threat to global food security. Disease control currently relies on anthelmintic drugs to which roundworms are becoming increasingly resistant. An alternative approach is control by vaccination and ‘hidden antigens’, components of the worm gut not encountered by the infected host, have been exploited to produce Barbervax, the first commercial vaccine for a gut dwelling nematode of any host. Here we present the structure of H-gal-GP, a hidden antigen from Haemonchus contortus, the Barber’s Pole worm, and a major component of Barbervax. We demonstrate its novel architecture, subunit composition and topology, flexibility and heterogeneity using cryo-electron microscopy, mass spectrometry, and modelling. Importantly, we demonstrate that complexes with the same architecture are present in other Strongylid roundworm parasites including human hookworm. This suggests a common ancestry and the potential for development of a unified hidden antigen vaccine

    Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems.

    Get PDF
    The use of human and veterinary pharmaceuticals is increasing. Over the past decade, there has been a proliferation of research into potential environmental impacts of pharmaceuticals in the environment. A Royal Society-supported seminar brought together experts from diverse scientific fields to discuss the risks posed by pharmaceuticals to wildlife. Recent analytical advances have revealed that pharmaceuticals are entering habitats via water, sewage, manure and animal carcases, and dispersing through food chains. Pharmaceuticals are designed to alter physiology at low doses and so can be particularly potent contaminants. The near extinction of Asian vultures following exposure to diclofenac is the key example where exposure to a pharmaceutical caused a population-level impact on non-target wildlife. However, more subtle changes to behaviour and physiology are rarely studied and poorly understood. Grand challenges for the future include developing more realistic exposure assessments for wildlife, assessing the impacts of mixtures of pharmaceuticals in combination with other environmental stressors and estimating the risks from pharmaceutical manufacturing and usage in developing countries. We concluded that an integration of diverse approaches is required to predict 'unexpected' risks; specifically, ecologically relevant, often long-term and non-lethal, consequences of pharmaceuticals in the environment for wildlife and ecosystems

    Maintaining the momentum in cryoEM for biological discovery

    Get PDF
    Cryo-electron microscopy (cryoEM) has been transformed over the last decade, with continual new hardware and software tools coming online, pushing the boundaries of what is possible and the nature and complexity of projects that can be undertaken. Here we discuss some recent trends and new tools which are creating opportunities to make more effective use of the resources available within facilities (both staff and equipment). We present approaches for the stratification of projects based on risk and known information about the projects, and the impacts this might have on the allocation of microscope time. We show that allocating different resources (microscope time) based on this information can lead to a significant increase in ‘successful’ use of the microscope, and reduce lead time by enabling projects to ‘fail faster’. This model results in more efficient and sustainable cryoEM facility operation

    Nonthermal Emission from Star-Forming Galaxies

    Full text link
    The detections of high-energy gamma-ray emission from the nearby starburst galaxies M82 & NGC253, and other local group galaxies, broaden our knowledge of star-driven nonthermal processes and phenomena in non-AGN star-forming galaxies. We review basic aspects of the related processes and their modeling in starburst galaxies. Since these processes involve both energetic electrons and protons accelerated by SN shocks, their respective radiative yields can be used to explore the SN-particle-radiation connection. Specifically, the relation between SN activity, energetic particles, and their radiative yields, is assessed through respective measures of the particle energy density in several star-forming galaxies. The deduced energy densities range from O(0.1) eV/cm^3 in very quiet environments to O(100) eV/cm^3 in regions with very high star-formation rates.Comment: 17 pages, 5 figures, to be published in Astrophysics and Space Science Proceeding

    Haul-Out Behavior of Harbor Seals (Phoca vitulina) in Hood Canal, Washington

    Get PDF
    The goal of this study was to model haul-out behavior of harbor seals (Phoca vitulina) in the Hood Canal region of Washington State with respect to changes in physiological, environmental, and temporal covariates. Previous research has provided a solid understanding of seal haul-out behavior. Here, we expand on that work using a generalized linear mixed model (GLMM) with temporal autocorrelation and a large dataset. Our dataset included behavioral haul-out records from archival and VHF radio tag deployments on 25 individual seals representing 61,430 seal hours. A novel application for increased computational efficiency allowed us to examine this large dataset with a GLMM that appropriately accounts for temporal autocorellation. We found significant relationships with the covariates hour of day, day of year, minutes from high tide and year. Additionally, there was a significant effect of the interaction term hour of day : day of year. This interaction term demonstrated that seals are more likely to haul out during nighttime hours in August and September, but then switch to predominantly daylight haul-out patterns in October and November. We attribute this change in behavior to an effect of human disturbance levels. This study also examined a unique ecological event to determine the role of increased killer whale (Orcinus orca) predation on haul-out behavior. In 2003 and 2005 these harbor seals were exposed to unprecedented levels of killer whale predation and results show an overall increase in haul-out probability after exposure to killer whales. The outcome of this study will be integral to understanding any changes in population abundance as a result of increased killer whale predation
    • …
    corecore