9,646 research outputs found

    The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons.

    Get PDF
    The recent discovery that mammalian nociceptors express Toll-like receptors (TLRs) has raised the possibility that these cells directly detect and respond to pathogens with implications for either direct nociceptor activation or sensitization. A range of neuronal TLRs have been identified, however a detailed description regarding the distribution of expression of these receptors within sub-populations of sensory neurons is lacking. There is also some debate as to the composition of the TLR4 receptor complex on sensory neurons. Here we use a range of techniques to quantify the expression of TLR4, TLR7 and some associated molecules within neurochemically-identified sub-populations of trigeminal (TG) and dorsal root (DRG) ganglion sensory neurons. We also detail the pattern of expression and co-expression of two isoforms of lysophosphatidylcholine acyltransferase (LPCAT), a phospholipid remodeling enzyme previously shown to be involved in the lipopolysaccharide-dependent TLR4 response in monocytes, within sensory ganglia. Immunohistochemistry shows that both TLR4 and TLR7 preferentially co-localize with transient receptor potential vallinoid 1 (TRPV1) and purinergic receptor P2X ligand-gated ion channel 3 (P2X3), markers of nociceptor populations, within both TG and DRG. A gene expression profile shows that TG sensory neurons express a range of TLR-associated molecules. LPCAT1 is expressed by a proportion of both nociceptors and non-nociceptive neurons. LPCAT2 immunostaining is absent from neuronal profiles within both TG and DRG and is confined to non-neuronal cell types under naïve conditions. Together, our results show that nociceptors express the molecular machinery required to directly respond to pathogenic challenge independently from the innate immune system

    Relationships Between Ultrasonic Noise and Macrostructure of Titanium Alloys

    Get PDF
    The complex microstructure of two-phase titanium alloys can produce considerable ultrasonic backscattering noise. The noise introduces problems in detecting small flaws, such as hard-alpha inclusions, by forming a background which can mask the flaw signals. Therefore better understanding of grain noise is required to quantify and increase the detectability of the small flaws. As an aid to understanding the grain noise, an independent scattering model was constructed and studied during last two years by Margetan and Thompson. In that model for the backscattered noise generated by a tone burst, the grain noise is described by following equation (1) N(t)=FOM×M(t) where N(t) is the rms grain noise, FOM is a material characteristic parameter and M is a factor that depends on the detailed description of the experimental configuration as well as the ultrasonic attenuation. The argument, t, is the time delay at which the noise is observed and can be related to a spatial position within the material. Since the model gives an explicit functional form for M, it is possible to use Eq. (1) to infer the FOM from a measurement of N(t).1 Figure 1 presents the results of such a measurement in which the noise was observed, through each of three orthogonal sides of a set of four Ti-6246 specimens, whose history of heat treatment is summarized in Table 1.2 The FOM’s of each of specimens A1, A2 and B2 varied by an order of magnitude, depending on the side of the measurement. However, on specimen C1, which was annealed above the beta transus of 1775 °F, the noise was nearly isotropic. The purpose of this paper is to understand the origin of this anisotropy

    Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines

    Get PDF
    Mangroves provide vital climate change mitigation and adaptation (CCMA) ecosystem services (ES), yet have suffered extensive tropics-wide declines. To mitigate losses, rehabilitation is high on the conservation agenda. However, the relative functionality and ES delivery of rehabilitated mangroves in different intertidal locations is rarely assessed. In a case study from Panay Island, Philippines, using field- and satellite-derived methods, we assess carbon stocks and coastal protection potential of rehabilitated low-intertidal seafront and mid- to upper-intertidal abandoned (leased) fishpond areas, against reference natural mangroves. Due to large sizes and appropriate site conditions, targeted abandoned fishpond reversion to former mangrove was found to be favourable for enhancing CCMA in the coastal zone. In a municipality-specific case study, 96.7% of abandoned fishponds with high potential for effective greenbelt rehabilitation had favourable tenure status for reversion. These findings have implications for coastal zone management in Asia in the face of climate change

    Theory of Ultrasonic Backscatter From Multiphase Polycrystalline Solids

    Get PDF
    Ultrasound scatters from the microscopic single crystals that constitute polycrystalline solids. The scattering originates from crystallite-crystallite variations in the density and elastic constants. For single-phase materials, each crystallite has the same density and the same crystalline symmetry. Hence, in single-phase materials scattering arises from the variation in velocity, which in turn is due to the anisotropy of the elastic constants and the more or less random orientation of the crystallites [1,2]. The situation is considerably more complicated in multiphase alloys where the density, the crystal symmetry and the elastic constants vary from crystallite to crystallite

    Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment

    Get PDF
    Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique in bioinformatics used to infer related residues among biological sequences. Thus alignment accuracy is crucial to a vast range of analyses, often in ways difficult to assess in those analyses. To compare the performance of different aligners and help detect systematic errors in alignments, a number of benchmarking strategies have been pursued. Here we present an overview of the main strategies--based on simulation, consistency, protein structure, and phylogeny--and discuss their different advantages and associated risks. We outline a set of desirable characteristics for effective benchmarking, and evaluate each strategy in light of them. We conclude that there is currently no universally applicable means of benchmarking MSA, and that developers and users of alignment tools should base their choice of benchmark depending on the context of application--with a keen awareness of the assumptions underlying each benchmarking strategy.Comment: Revie

    The Inverse Born Approximation: Exact Determination of Shape of Convex Voids

    Get PDF
    The Inverse Born Approximation (IBA) to the elastic wave inverse scattering problem is known to give highly accurate results for the shape of complex voids. In this paper we present an argument demonstrating that the IBA is, in fact, exact for determining the size, shape and orientation of a wide class of these scatterers given infinite bandwidth and unlimited aperture information. Essentially, our argument demonstrates how the IBA algorithm picks out the singular contribution to the impulse response function and correctly relates it to the shape of the scatterer. Some specific examples will be used to illustrate the more intuitive aspects of the discussion
    corecore