4,669 research outputs found

    Magnetic anisotropy in hole-doped superconducting Ba 0.67K 0.33Fe 2As2 probed by polarized inelastic neutron scattering

    Get PDF
    We use polarized inelastic neutron scattering (INS) to study spin excitations of optimally hole-doped superconductor Ba0.67_{0.67}K0.33_{0.33}Fe2_2As2_{2} (Tc=38T_c=38 K). In the normal state, the imaginary part of the dynamic susceptibility, χ(Q,ω)\chi^{\prime\prime}(Q,\omega), shows magnetic anisotropy for energies below \sim7 meV with c-axis polarized spin excitations larger than that of the in-plane component. Upon entering into the superconducting state, previous unpolarized INS experiments have shown that spin gaps at \sim5 and 0.75 meV open at wave vectors Q=(0.5,0.5,0)Q=(0.5,0.5,0) and (0.5,0.5,1)(0.5,0.5,1), respectively, with a broad neutron spin resonance at Er=15E_r=15 meV. Our neutron polarization analysis reveals that the large difference in spin gaps is purely due to different spin gaps in the c-axis and in-plane polarized spin excitations, resulting resonance with different energy widths for the c-axis and in-plane spin excitations. The observation of spin anisotropy in both opitmally electron and hole-doped BaFe2_2As2_2 is due to their proximity to the AF ordered BaFe2_2As2_2 where spin anisotropy exists below TNT_N.Comment: 5 pages, 4 figure

    Rupture of the profunda femoris artery in a patient with alcoholic liver disease: a case report

    Get PDF
    Introduction: Profunda femoris artery aneurysms are rare and often present with rupture. However, to the best of our knowledge, rupture of a non-aneurismal profunda femoris artery has never been reported before. Case presentation: We report the case of a 31-year-old Caucasian man with alcoholic liver disease who presented with rupture of the profunda femoris artery following blunt trauma which was treated by endovascular embolization. Conclusion: Coagulopathy secondary to alcoholic liver disease is a major contributory factor and a high index of suspicion of vascular injury must be attached to such patients following blunt trauma. Although there have no previous documented cases, treatment by endovascular embolization appears to be effective and safe

    An integrated asset performance framework for operational buildings – preliminary results of focused group validations in Hong Kong and Australia

    Get PDF
    Author name used in this publication: Then, Danny Shiem-shinRefereed conference paper2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Distinguishing s±s^{\pm} and s++s^{++} electron pairing symmetries by neutron spin resonance in superconducting NaFe0.935_{0.935}Co0.045_{0.045}As

    Get PDF
    A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s±s^\pm-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E2ΔE\leq 2\Delta) below TcT_c. On the other hand, the s++s^{++}-pairing symmetry expects a broad spin excitation enhancement at an energy above 2Δ2\Delta below TcT_c. Although the resonance has been observed in iron pnictide superconductors at an energy below 2Δ2\Delta consistent with the s±s^\pm-pairing symmetry, the mode has also be interpreted as arising from the s++s^{++}-pairing symmetry with E2ΔE\ge 2\Delta due to its broad energy width and the large uncertainty in determining the SC gaps. Here we use inelastic neutron scattering to reveal a sharp resonance at E=7 meV in SC NaFe0.935_{0.935}Co0.045_{0.045}As (Tc=18T_c = 18 K). On warming towards TcT_c, the mode energy hardly softens while its energy width increases rapidly. By comparing with calculated spin-excitations spectra within the s±s^{\pm} and s++s^{++}-pairing symmetries, we conclude that the ground-state resonance in NaFe0.935_{0.935}Co0.045_{0.045}As is only consistent with the s±s^{\pm}-pairing, and is inconsistent with the s++s^{++}-pairing symmetry.Comment: 9 pages, 8 figures. submitted to PR

    HATS-13b and HATS-14b: two transiting hot Jupiters from the HATSouth survey

    Get PDF
    We report the discovery of HATS-13b and HATS-14b, two hot-Jupiter transiting planets discovered by the HATSouth survey. The host stars are quite similar to each other (HATS-13: V = 13.9 mag, M* = 0.96 Msun, R* = 0.89 Rsun, Teff = 5500 K, [Fe/H] = 0.05; HATS-14: V = 13.8 mag, M* = 0.97 Msun, R* = 0.93 Rsun, Teff = 5350 K, [Fe/H] = 0.33) and both the planets orbit around them with a period of roughly 3 days and a separation of roughly 0.04 au. However, even though they are irradiated in a similar way, the physical characteristics of the two planets are very different. HATS-13b, with a mass of Mp = 0.543 MJ and a radius of Rp = 1.212 RJ, appears as an inflated planet, while HATS-14b, having a mass of Mp = 1.071 MJ and a radius of Rp = 1.039 RJ, is only slightly larger in radius than Jupiter.Comment: 13 pages, 7 figures, Submitted to Astronomy & Astrophysics. arXiv admin note: text overlap with arXiv:1503.0006

    Disk and outflow signatures in Orion-KL: The power of high-resolution thermal infrared spectroscopy

    Full text link
    We used the CRIRES spectrograph on the VLT to study the ro-vibrational 12CO/13CO, the Pfund beta and H2 emission between 4.59 and 4.72mu wavelengths toward the BN object, the disk candidate source n, and a proposed dust density enhancement IRC3. We detected CO absorption and emission features toward all three targets. Toward the BN object, the data partly confirm the results obtained more than 25 years ago by Scoville et al., however, we also identify several new features. While the blue-shifted absorption is likely due to outflowing gas, toward the BN object we detect CO in emission extending in diameter to ~3300AU. Although at the observational spectral resolution limit, the 13CO line width of that feature increases with energy levels, consistent with a disk origin. If one attributes the extended CO emission also to a disk origin, its extent is consistent with other massive disk candidates in the literature. For source n, we also find the blue-shifted CO absorption likely from an outflow. However, it also exhibits a narrower range of redshifted CO absorption and adjacent weak CO emission, consistent with infalling motions. We do not spatially resolve the emission for source n. For both sources we conduct a Boltzmann analysis of the 13CO absorption features and find temperatures between 100 and 160K, and H2 column densities of the order a few times 10^23cm^-2. The observational signatures from IRC3 are very different with only weak absorption against a much weaker continuum source. However, the CO emission is extended and shows wedge-like position velocity signatures consistent with jet-entrainment of molecular gas, potentially associated with the Orion-KL outflow system. We also present and discuss the Pfund beta and H2 emission in the region.Comment: 12 pages, 15 pages, accepted for A&A, you find a high-resolution copy at http://www.mpia-hd.mpg.de/homes/beuther/papers.htm

    Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics

    Get PDF
    Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth’s taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature

    Estimation of unsaturated hydraulic conductivity of granular soils from particle size parameters

    Get PDF
    Estimation of unsaturated hydraulic conductivity could benefit many engineering or research problems such as water flow in the vadose zone, unsaturated seepage and capillary barriers for underground waste isolation. The unsaturated hydraulic conductivity of a soil is related to its saturated hydraulic conductivity value as well as its water retention behaviour. By following the first author's previous work, the saturated hydraulic conductivity and water retention curve (WRC) of sandy soils can be estimated from their basic gradation parameters. In this paper, we further suggest the applicable range of the estimation method is for soils with d10 > 0.02mm and Cu < 20, in which d10 is the grain diameter corresponding to 10% passing and Cu is the coefficient of uniformity (Cu= d60/d10). The estimation method is also modified to consider the porosity variation effect. Then the proposed method is applied to predict unsaturated hydraulic conductivity properties of different sandy soils and also compared with laboratory and field test results. The comparison shows that the newly developed estimation method, which predicts the relative permeability of unsaturated sands from basic grain size parameters and porosity, generally has a fair agreement with measured data. It also indicates that the air-entry value is mainly relative to the mean grain size and porosity value change from the intrinsic value. The rate of permeability decline with suction is mainly associated with grain size polydispersity
    corecore