971 research outputs found

    Evolution of Primary Research Studies in Digital Interventions for Mental Well-Being Promotion from 2004 to 2023: A Bibliometric Analysis of Studies on the Web of Science

    Get PDF
    Research into digital interventions for mental well-being promotion has grown in recent years, fuelled by the need to improve mental health prevention strategies and respond to challenges arising from the coronavirus (COVID-19) pandemic. This bibliometric analysis provides a structured overview of publication trends and themes in primary research studies reporting an array of digital interventions indexed at WoS from 2004 to 2023. Bibliometric data were collected on a sample of 1117 documents and analysed using the Biblioshiny package. Supplemental network visualisation analysis was conducted using VosViewer. The study, based on Web of Science and Scopus databases, indicates a marked increase in publications post-2020. There were seven groups of research themes clustered around “Mindfulness”, “Anxiety”, “COVID-19”, “Acceptance and Commitment Therapy”, “Depression”, “Web-based”, and “Positive Psychology”. Further, results demonstrated the growth of specific themes (e.g., mindfulness, mhealth), the defining impact of COVID-19 studies, and the importance of both randomised controlled trials and formative research. Overall, research in the field is still early in its development and is expected to continue to grow. Findings highlight the field’s dynamic response to societal and technological changes, suggesting a future trajectory that leans increasingly on digital platforms for mental health promotion and intervention. Finally, study limitations and implications for future studies are discussed

    A Local Moment Approach to magnetic impurities in gapless Fermi systems

    Full text link
    A local moment approach is developed for the single-particle excitations of a symmetric Anderson impurity model (AIM), with a soft-gap hybridization vanishing at the Fermi level with a power law r > 0. Local moments are introduced explicitly from the outset, and a two-self-energy description is employed in which the single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. The resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime. While the primary emphasis is on single particle dynamics, the quantum phase transition between strong coupling (SC) and (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained. Results for both single-particle spectra and SC/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies. A number of further testable predictions are made; in particular, for r < 1/2, spectra characteristic of the SC state are predicted to exhibit an r-dependent universal scaling form as the SC/LM phase boundary is approached and the Kondo scale vanishes. Results for the `normal' r = 0 AIM are moreover recovered smoothly from the limit r -> 0, where the resultant description of single-particle dynamics includes recovery of Doniach-Sunjic tails in the Kondo resonance, as well as characteristic low-energy Fermi liquid behaviour.Comment: 52 pages, 19 figures, submitted to Journal of Physics: Condensed Matte

    High-excitation OH and H_2O lines in Markarian 231: the molecular signatures of compact far-infrared continuum sources

    Full text link
    The ISO/LWS far-infrared spectrum of the ultraluminous galaxy Mkn 231 shows OH and H_2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 micron and [C II] 158 micron lines. Our analysis shows that OH and H_2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (T_dust=70-100 K), optically thick (tau_100micron=1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity L_IR, the observed OH and H2O high-lying lines arise from a luminous (L/L_IR~0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH)>~10^{17} cm^{-2} and N(H_2O)>~6x10^{16} cm^{-2} may indicate XDR chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 micron, and [O I] 63 micron lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mkn 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation.Comment: 16 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Anderson impurities in gapless hosts: comparison of renormalization group and local moment approaches

    Full text link
    The symmetric Anderson impurity model, with a soft-gap hybridization vanishing at the Fermi level with power law r > 0, is studied via the numerical renormalization group (NRG). Detailed comparison is made with predictions arising from the local moment approach (LMA), a recently developed many-body theory which is found to provide a remarkably successful description of the problem. Results for the `normal' (r = 0) impurity model are obtained as a specific case. Particular emphasis is given both to single-particle excitation dynamics, and to the transition between the strong coupling (SC) and local moment (LM) phases of the model. Scaling characteristics and asymptotic behaviour of the SC/LM phase boundaries are considered. Single-particle spectra are investigated in some detail, for the SC phase in particular. Here, the modified spectral functions are found to contain a generalized Kondo resonance that is ubiquitously pinned at the Fermi level; and which exhibits a characteristic low-energy Kondo scale that narrows progressively upon approach to the SC->LM transition, where it vanishes. Universal scaling of the spectra as the transition is approached thus results. The scaling spectrum characteristic of the normal Anderson model is recovered as a particular case, and is captured quantitatively by the LMA. In all cases the r-dependent scaling spectra are found to possess characteristic low-energy asymptotics, but to be dominated by generalized Doniach-Sunjic tails, in agreement with LMA predictions.Comment: 26 pages, 14 figures, submitted for publicatio

    Social Preferences and the Efficiency of Bilateral Exchange

    Get PDF
    Under what conditions do social preferences, such as altruism or a concern for fair outcomes, generate efficient trade? I analyze theoretically a simple bilateral exchange game: Each player sequentially takes an action that reduces his own material payoff but increases the other player’s. Each player’s preferences may depend on both his/her own material payoff and the other player’s. I identify necessary conditions and sufficient conditions on the players’ preferences for the outcome of their interaction to be Pareto efficient. The results have implications for interpreting the rotten kid theorem, gift exchange in the laboratory, and gift exchange in the field

    Evaluation of surface contamination with cyclophosphamide following simulated hazardous drug preparation activities using two closed-system products

    Get PDF
    Purpose. A preliminary investigation was conducted to evaluate and compare the effectiveness of two closed-system products in preventing contamination of typical pharmacy workplace surfaces with cyclophosphamide during simulated hazardous drug preparation activities in a controlled laboratory setting

    Single-particle dynamics of the Anderson model: a local moment approach

    Full text link
    A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valent and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.Comment: 26 pages, 9 figure

    Influence of age on the diagnosis of myocardial infarction

    Get PDF
    The 99th centile of cardiac troponin, derived from a healthy reference population, is recommended as the diagnostic threshold for myocardial infarction, but troponin concentrations are strongly influenced by age. Our aim was to assess the diagnostic performance of cardiac troponin in older patients presenting with suspected myocardial infarction. METHODS: In a secondary analysis of a multicenter trial of consecutive patients with suspected myocardial infarction, we assessed the diagnostic accuracy of high-sensitivity cardiac troponin I at presentation for the diagnosis of type 1, type 2, or type 4b myocardial infarction across 3 age groups (<50, 50–74, and ≄75 years) using guideline-recommended sex-specific and age-adjusted 99th centile thresholds. RESULTS: In 46 435 consecutive patients aged 18 to 108 years (mean, 61±17 years), 5216 (11%) had a diagnosis of myocardial infarction. In patients <50 (n=12 379), 50 to 74 (n=22 380), and ≄75 (n=11 676) years, the sensitivity of the guideline-recommended threshold was similar at 79.2% (95% CI, 75.5–82.9), 80.6% (95% CI, 79.2–82.1), and 81.6% (95% CI, 79.8–83.2), respectively. The specificity decreased with advancing age from 98.3% (95% CI, 98.1–98.5) to 95.5% (95% CI, 95.2–95.8), and 82.6% (95% CI, 81.9–83.4). The use of age-adjusted 99th centile thresholds improved the specificity (91.3% [90.8%–91.9%] versus 82.6% [95% CI, 81.9%–83.4%]) and positive predictive value (59.3% [57.0%–61.5%] versus 51.5% [49.9%–53.3%]) for myocardial infarction in patients ≄75 years but failed to prevent the decrease in either parameter with increasing age and resulted in a marked reduction in sensitivity compared with the use of the guideline-recommended threshold (55.9% [53.6%–57.9%] versus 81.6% [79.8%–83.3%]. CONCLUSIONS: Age alters the diagnostic performance of cardiac troponin, with reduced specificity and positive predictive value in older patients when applying the guideline-recommended or age-adjusted 99th centiles. Individualized diagnostic approaches rather than the adjustment of binary thresholds are needed in an aging population

    Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology

    Analysis of nanopore detector measurements using Machine-Learning methods, with application to single-molecule kinetic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A nanopore detector has a nanometer-scale trans-membrane channel across which a potential difference is established, resulting in an ionic current through the channel in the pA-nA range. A distinctive channel current blockade signal is created as individually "captured" DNA molecules interact with the channel and modulate the channel's ionic current. The nanopore detector is sensitive enough that nearly identical DNA molecules can be classified with very high accuracy using machine learning techniques such as Hidden Markov Models (HMMs) and Support Vector Machines (SVMs).</p> <p>Results</p> <p>A non-standard implementation of an HMM, emission inversion, is used for improved classification. Additional features are considered for the feature vector employed by the SVM for classification as well: The addition of a single feature representing spike density is shown to notably improve classification results. Another, much larger, feature set expansion was studied (2500 additional features instead of 1), deriving from including all the HMM's transition probabilities. The expanded features can introduce redundant, noisy information (as well as diagnostic information) into the current feature set, and thus degrade classification performance. A hybrid Adaptive Boosting approach was used for feature selection to alleviate this problem.</p> <p>Conclusion</p> <p>The methods shown here, for more informed feature extraction, improve both classification and provide biologists and chemists with tools for obtaining a better understanding of the kinetic properties of molecules of interest.</p
    • 

    corecore