53 research outputs found

    Survival Motor Neuron (SMN) protein is required for normal mouse liver development

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA

    Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA

    Sideroflexin 3 is an α-synuclein-dependent mitochondrial protein that regulates synaptic morphology.

    Get PDF
    α-Synuclein plays a central role in Parkinson's disease, where it contributes to the vulnerability of synapses to degeneration. However, the downstream mechanisms through which α-synuclein controls synaptic stability and degeneration are not fully understood. Here, comparative proteomics on synapses isolated from α-synuclein-/- mouse brain identified mitochondrial proteins as primary targets of α-synuclein, revealing 37 mitochondrial proteins not previously linked to α-synuclein or neurodegeneration pathways. Of these, sideroflexin 3 (SFXN3) was found to be a mitochondrial protein localized to the inner mitochondrial membrane. Loss of SFXN3 did not disturb mitochondrial electron transport chain function in mouse synapses, suggesting that its function in mitochondria is likely to be independent of canonical bioenergetic pathways. In contrast, experimental manipulation of SFXN3 levels disrupted synaptic morphology at the Drosophila neuromuscular junction. These results provide novel insights into α-synuclein-dependent pathways, highlighting an important influence on mitochondrial proteins at the synapse, including SFXN3. We also identify SFXN3 as a new mitochondrial protein capable of regulating synaptic morphology in vivo

    UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy

    Get PDF
    Deafferentation of motor neurons as a result of defective sensory-motor connectivity is a critical early event in the pathogenesis of spinal muscular atrophy, but the underlying molecular pathways remain unknown. We show that restoration of ubiquitin-like modifier-activating enzyme 1 (UBA1) was sufficient to correct sensory-motor connectivity in the spinal cord of mice with spinal muscular atrophy. Aminoacyl-tRNA synthetases, including GARS, were identified as downstream targets of UBA1. Regulation of GARS by UBA1 occurred via a non-canonical pathway independent of ubiquitylation. Dysregulation of UBA1/GARS pathways in spinal muscular atrophy mice disrupted sensory neuron fate, phenocopying GARS-dependent defects associated with Charcot-Marie-Tooth disease. Sensory neuron fate was corrected following restoration of UBA1 expression and UBA1/GARS pathways in spinal muscular atrophy mice. We conclude that defective sensory motor connectivity in spinal muscular atrophy results from perturbations in a UBA1/GARS pathway that modulates sensory neuron fate, thereby highlighting significant molecular and phenotypic overlap between spinal muscular atrophy and Charcot-Marie-Tooth disease

    Sideroflexin 3 is an α-synuclein-dependent mitochondrial protein that regulates synaptic morphology.

    Get PDF
    α-Synuclein plays a central role in Parkinson's disease, where it contributes to the vulnerability of synapses to degeneration. However, the downstream mechanisms through which α-synuclein controls synaptic stability and degeneration are not fully understood. Here, comparative proteomics on synapses isolated from α-synuclein-/- mouse brain identified mitochondrial proteins as primary targets of α-synuclein, revealing 37 mitochondrial proteins not previously linked to α-synuclein or neurodegeneration pathways. Of these, sideroflexin 3 (SFXN3) was found to be a mitochondrial protein localized to the inner mitochondrial membrane. Loss of SFXN3 did not disturb mitochondrial electron transport chain function in mouse synapses, suggesting that its function in mitochondria is likely to be independent of canonical bioenergetic pathways. In contrast, experimental manipulation of SFXN3 levels disrupted synaptic morphology at the Drosophila neuromuscular junction. These results provide novel insights into α-synuclein-dependent pathways, highlighting an important influence on mitochondrial proteins at the synapse, including SFXN3. We also identify SFXN3 as a new mitochondrial protein capable of regulating synaptic morphology in vivo

    Cellular and Molecular Anatomy of the Human Neuromuscular Junction

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.The neuromuscular junction (NMJ) plays a fundamental role in transferring information from lower motor neuron to skeletal muscle to generate movement. It is also an experimentally accessible model synapse routinely studied in animal models to explore fundamental aspects of synaptic form and function. Here, we combined morphological techniques, super-resolution imaging, and proteomic profiling to reveal the detailed cellular and molecular architecture of the human NMJ. Human NMJs were significantly smaller, less complex, and more fragmented than mouse NMJs. In contrast to mice, human NMJs were also remarkably stable across the entire adult lifespan, showing no signs of age-related degeneration or remodeling. Super-resolution imaging and proteomic profiling revealed distinctive distribution of active zone proteins and differential expression of core synaptic proteins and molecular pathways at the human NMJ. Taken together, these findings reveal human-specific cellular and molecular features of the NMJ that distinguish them from comparable synapses in other mammalian species.This work was supported by small project grant funding from Biomedical Sciences (Anatomy) at the University of Edinburgh (T.H.G. and R.A.J.), the Darwin Trust of Edinburgh (M.L.H.), and the BBSRC (Institute Strategic Programme Funding; T.M.W., S.L.E., and L.C.G.)

    Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture

    Get PDF
    Abstract Background Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. Methods The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. Results Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. Conclusions Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo

    Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. It is caused by mutations/deletions of the survival motor neuron 1 (<it>SMN1</it>) gene and is typified by the loss of spinal cord motor neurons, muscular atrophy, and in severe cases, death. The SMN protein is ubiquitously expressed and various cellular- and tissue-specific functions have been investigated to explain the specific motor neuron loss in SMA. We have previously shown that the RhoA/Rho kinase (ROCK) pathway is misregulated in cellular and animal SMA models, and that inhibition of ROCK with the chemical Y-27632 significantly increased the lifespan of a mouse model of SMA. In the present study, we evaluated the therapeutic potential of the clinically approved ROCK inhibitor fasudil.</p> <p>Methods</p> <p>Fasudil was administered by oral gavage from post-natal day 3 to 21 at a concentration of 30 mg/kg twice daily. The effects of fasudil on lifespan and SMA pathological hallmarks of the SMA mice were assessed and compared to vehicle-treated mice. For the Kaplan-Meier survival analysis, the log-rank test was used and survival curves were considered significantly different at <it>P </it>< 0.05. For the remaining analyses, the Student's two-tail <it>t </it>test for paired variables and one-way analysis of variance (ANOVA) were used to test for differences between samples and data were considered significantly different at <it>P </it>< 0.05.</p> <p>Results</p> <p>Fasudil significantly improves survival of SMA mice. This dramatic phenotypic improvement is not mediated by an up-regulation of Smn protein or via preservation of motor neurons. However, fasudil administration results in a significant increase in muscle fiber and postsynaptic endplate size, and restores normal expression of markers of skeletal muscle development, suggesting that the beneficial effects of fasudil could be muscle-specific.</p> <p>Conclusions</p> <p>Our work underscores the importance of muscle as a therapeutic target in SMA and highlights the beneficial potential of ROCK inhibitors as a therapeutic strategy for SMA and for other degenerative diseases characterized by muscular atrophy and postsynaptic immaturity.</p

    Muscleblind-Like 1 Knockout Mice Reveal Novel Splicing Defects in the Myotonic Dystrophy Brain

    Get PDF
    Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by a CTG trinucleotide repeat expansion (CTGexp) in the DMPK gene. In skeletal muscle, nuclear sequestration of the alternative splicing factor muscleblind-like 1 (MBNL1) explains the majority of the alternative splicing defects observed in the HSALR transgenic mouse model which expresses a pathogenic range CTGexp. In the present study, we addressed the possibility that MBNL1 sequestration by CUGexp RNA also contributes to splicing defects in the mammalian brain. We examined RNA from the brains of homozygous Mbnl1ΔE3/ΔE3 knockout mice using splicing-sensitive microarrays. We used RT-PCR to validate a subset of alternative cassette exons identified by microarray analysis with brain tissues from Mbnl1ΔE3/ΔE3 knockout mice and post-mortem DM1 patients. Surprisingly, splicing-sensitive microarray analysis of Mbnl1ΔE3/ΔE3 brains yielded only 14 candidates for mis-spliced exons. While we confirmed that several of these splicing events are perturbed in both Mbnl1 knockout and DM1 brains, the extent of splicing mis-regulation in the mouse model was significantly less than observed in DM1. Additionally, several alternative exons, including Grin1 exon 4, App exon 7 and Mapt exons 3 and 9, which have previously been reported to be aberrantly spliced in human DM1 brain, were spliced normally in the Mbnl1 knockout brain. The sequestration of MBNL1 by CUGexp RNA results in some of the aberrant splicing events in the DM1 brain. However, we conclude that other factors, possibly other MBNL proteins, likely contribute to splicing mis-regulation in the DM1 brain
    corecore