58 research outputs found

    Embodied Emotion Modulates Neural Signature of Performance Monitoring

    Get PDF
    BACKGROUND:Recent research on the "embodiment of emotion" implies that experiencing an emotion may involve perceptual, somatovisceral, and motor feedback aspects. For example, manipulations of facial expression and posture appear to induce emotional states and influence how affective information is processed. The present study investigates whether performance monitoring, a cognitive process known to be under heavy control of the dopaminergic system, is modulated by induced facial expressions. In particular, we focused on the error-related negativity, an electrophysiological correlate of performance monitoring. METHODS/PRINCIPAL FINDINGS:During a choice reaction task, participants held a Chinese chop stick either horizontally between the teeth ("smile" condition) or, in different runs, vertically ("no smile") with the upper lip. In a third control condition, no chop stick was used ("no stick"). It could be shown on a separate sample that the facial feedback procedure is feasible to induce mild changes in positive affect. In the ERP sample, the smile condition, hypothesized to lead to an increase in dopaminergic activity, was associated with a decrease of ERN amplitude relative to "no smile" and "no stick" conditions. CONCLUSION:Embodying emotions by induced facial expressions leads to a changes in the neural correlates of error detection. We suggest that this is due to the joint influence of the dopaminergic system on positive affect and performance monitoring

    How the Emotional Content of Discourse Affects Language Comprehension

    Get PDF
    Emotion effects on cognition have often been reported. However, only few studies investigated emotional effects on subsequent language processing, and in most cases these effects were induced by non-linguistic stimuli such as films, faces, or pictures. Here, we investigated how a paragraph of positive, negative, or neutral emotional valence affects the processing of a subsequent emotionally neutral sentence, which contained either semantic, syntactic, or no violation, respectively, by means of event-related brain potentials (ERPs). Behavioral data revealed strong effects of emotion; error rates and reaction times increased significantly in sentences preceded by a positive paragraph relative to negative and neutral ones. In ERPs, the N400 to semantic violations was not affected by emotion. In the syntactic experiment, however, clear emotion effects were observed on ERPs. The left anterior negativity (LAN) to syntactic violations, which was not visible in the neutral condition, was present in the negative and positive conditions. This is interpreted as reflecting modulatory effects of prior emotions on syntactic processing, which is discussed in the light of three alternative or complementary explanations based on emotion-induced cognitive styles, working memory, and arousal models. The present effects of emotion on the LAN are especially remarkable considering that syntactic processing has often been regarded as encapsulated and autonomous

    Leadership in Orchestra Emerges from the Causal Relationships of Movement Kinematics

    Get PDF
    Non-verbal communication enables efficient transfer of information among people. In this context, classic orchestras are a remarkable instance of interaction and communication aimed at a common aesthetic goal: musicians train for years in order to acquire and share a non-linguistic framework for sensorimotor communication. To this end, we recorded violinists' and conductors' movement kinematics during execution of Mozart pieces, searching for causal relationships among musicians by using the Granger Causality method (GC). We show that the increase of conductor-to-musicians influence, together with the reduction of musician-to-musician coordination (an index of successful leadership) goes in parallel with quality of execution, as assessed by musical experts' judgments. Rigorous quantification of sensorimotor communication efficacy has always been complicated and affected by rather vague qualitative methodologies. Here we propose that the analysis of motor behavior provides a potentially interesting tool to approach the rather intangible concept of aesthetic quality of music and visual communication efficacy

    Nobody Is Perfect: ERP Effects Prior to Performance Errors in Musicians Indicate Fast Monitoring Processes

    Get PDF
    Background: One central question in the context of motor control and action monitoring is at what point in time errors can be detected. Previous electrophysiological studies investigating this issue focused on brain potentials elicited after erroneous responses, mainly in simple speeded response tasks. In the present study, we investigated brain potentials before the commission of errors in a natural and complex situation. Methodology/Principal Findings: Expert pianists bimanually played scales and patterns while the electroencephalogram (EEG) was recorded. Event-related potentials (ERPs) were computed for correct and incorrect performances. Results revealed differences already 100 ms prior to the onset of a note (i.e., prior to auditory feedback). We further observed that erroneous keystrokes were delayed in time and pressed more slowly. Conclusions: Our data reveal neural mechanisms in musicians that are able to detect errors prior to the execution of erroneous movements. The underlying mechanism probably relies on predictive control processes that compare the predicted outcome of an action with the action goal

    Electromagnetic Correlates of Musical Expertise in Processing of Tone Patterns

    Get PDF
    Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training

    Deep Brain Stimulation of Nucleus Accumbens Region in Alcoholism Affects Reward Processing

    Get PDF
    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H2[15O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control
    corecore