203 research outputs found

    Dental implants with anti-biofilm properties: A pilot study for developing a new sericin-based coating

    Get PDF
    Aim: several strategies have been tested in recent years to prevent bacterial colonization of dental implants. Sericin, one of the two main silk proteins, possesses relevant biological activities and also literature reports about its potential antibacterial properties, but results are discordant and not yet definitive. The aim of this study was to evaluate the effectiveness of different experimental protocols in order to obtain a sericin-based coating on medical grade titanium (Ti) able to reduce microbial adhesion to the dental implant surface. Materials and Methods: different strategies for covalent bonding of sericin to Ti were pursued throughout a multi-step procedure on Ti-6Al-4V disks. The surface of grade 5 Ti was initially immersed in NaOH solution to obtain the exposure of functional -OH groups. Two different silanization strategies were then tested using aminopropyltriethoxysilane (APTES). Eventually, the bonding between silanized Ti-6Al-4V and sericin was obtained with two different crosslinking processes: glutaraldehyde (GLU) or carbodiimide/N-Hydroxy-succinimide (EDC/NHS). Micro-morphological and compositional analyses were performed on the samples at each intermediate step to assess the most effective coating strategy able to optimize the silanization and bioconjugation processes. Microbiological tests on the coated Ti-6Al-4V disks were conducted in vitro using a standard biofilm producer strain of Staphylococcus aureus (ATCC 6538) to quantify the inhibition of microbial biofilm formation (anti-biofilm efficacy) at 24 hours. Results: both silanization techniques resulted in a significant increase of silicon (Si) on the Ti-6Al-4V surfaces etched with NaOH. Differences were found between GLU and EDC/NHS bioconjugation strategies in terms of composition, surface micro-morphology and anti-biofilm efficacy. Ti-6Al-4V samples coated with GLU-bound sericin after silanization obtained via vapor phase deposition proved that this technique is the most convenient and effective coating strategy, resulting in a bacterial inhibition of about 53% in respect to the uncoated Ti-6Al-4V disks. Conclusions: The coating with glutaraldehyde-bound sericin after silanization in the vapor phase showed promising bacterial inhibition values with a significant reduction of S. aureus biofilm. Further studies including higher number of replicates and more peri-implant-relevant microorganisms are needed to evaluate the applicability of this experimental protocol to dental implants. View Full-Tex

    Inhibitory effects of lipopeptides and glycolipids on C. albicans - Staphylococcus spp. dual-species biofilms

    Get PDF
    Microbial biofilms strongly resist host immune responses and antimicrobial treatments and are frequently responsible for chronic infections in peri-implant tissues. Biosurfactants (BSs) have recently gained prominence as a new generation of anti-adhesive and antimicrobial agents with great biocompatibility and were recently suggested for coating implantable materials in order to improve their anti-biofilm properties. In this study, the anti-biofilm activity of lipopeptide AC7BS, rhamnolipid R89BS and sophorolipid SL18 was evaluated against clinically relevant fungal/bacterial dual-species biofilms (Candida albicans, Staphylococcus aureus, Staphylococcus epidermidis) through quantitative and qualitative in vitro tests. C. albicans - S. aureus and C. albicans - S. epidermidis cultures were able to produce a dense biofilm on the surface of the polystyrene plates and on medical-grade silicone discs. All tested BSs demonstrated an effective inhibitory activity against dual-species biofilms formation in terms of total biomass, cell metabolic activity, microstructural architecture and cell viability, up to 72h on both these surfaces. In co-incubation conditions, in which BSs were tested in free soluble form, rhamnolipid R89BS (0.05 mg/ml) was the most effective among the tested biosurfactants against the formation of both dual-species biofilms, reducing on average 94% and 95% of biofilm biomass and metabolic activity at 72h of incubation, respectively. Similarly, rhamnolipid R89BS silicone surface coating proved to be the most effective in inhibiting the formation of both dual-species biofilms, with average reductions of 93% and 90%, respectively. Scanning Electron Microscopy observations showed areas of treated surfaces that were free of microbial cells or in which thinner and less structured biofilms were present, compared to controls. The obtained results endorse the idea that coating of implant surfaces with BSs may be a promising strategy for the prevention of C. albicans -Staphylococcus spp. colonization on medical devices, and can potentially contribute to the reduction of the high economic efforts undertaken by healthcare systems for the treatment of these complex fungal-bacterial infections

    Effects of mushroom and chicory extracts on the shape, physiology and proteome of the cariogenic bacterium Streptococcus mutans

    Get PDF
    open16siDental caries is an infectious disease which results from the acidic demineralisation of the tooth enamel and dentine as a consequence of the dental plaque (a microbial biofilm) accumulation. Research showed that several foods contain some components with antibacterial and antiplaque activity. Previous studies indicated antimicrobial and antiplaque activities in a low-molecular-mass (LMM) fraction of extracts from either an edible mushroom (Lentinus edodes) or from Italian red chicory (Cichorium intybus).Signoretto, Caterina; Marchi, Anna; Bertoncelli, Anna; Burlacchini, Gloria; Milli, Alberto; Tessarolo, Francesco; Caola, Iole; Papetti, Adele; Pruzzo, Carla; Zaura, Egija; Lingström, Peter; Ofek, Itzhak; Spratt, David A; Pratten, Jonathan; Wilson, Michael; Canepari, PietroSignoretto, Caterina; Marchi, Anna; Bertoncelli, Anna; Burlacchini, Gloria; Milli, Alberto; Tessarolo, Francesco; Caola, Iole; Papetti, Adele; Pruzzo, Carla; Zaura, Egija; Lingström, Peter; Ofek, Itzhak; Spratt, David A; Pratten, Jonathan; Wilson, Michael; Canepari, Pietr

    A multimodal approach for tracing lateralization along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies

    Full text link
    Recent studies have revealed asymmetries between the left and right sides of the brain in invertebrate species. Here we present a review of a series of recent studies from our labs, aimed at tracing asymmetries at different stages along the honeybee's (Apis mellifera) olfactory pathway. These include estimates of the number of sensilla present on the two antennae, obtained by scanning electron microscopy, as well as electroantennography recordings of the left and right antennal responses to odorants. We describe investigative studies of the antennal lobes, where multi-photon microscopy is used to search for possible morphological asymmetries between the two brain sides. Moreover, we report on recently published results obtained by two-photon calcium imaging for functional mapping of the antennal lobe aimed at comparing patterns of activity evoked by different odours. Finally, possible links to the results of behavioural tests, measuring asymmetries in single-sided olfactory memory recall, are discussed.Comment: 28 pages, 8 figure
    corecore