154 research outputs found

    Zooming out the microscope on cumulative cultural evolution: ‘Trajectory B’ from animal to human culture

    Get PDF
    It is widely believed that human culture originated in the appearance of Oldowan stone-tool production (circa 2.9 Mya) and a primitive but effective ability to copy detailed know-how. Cumulative cultural evolution is then believed to have led to modern humans and human culture via self-reinforcing gene-culture co-evolution. This outline evolutionary trajectory has come to be seen as all but self-evident, but dilemmas have appeared as it has been explored in increasing detail. Can we attribute even a minimally effective know-how copying capability to Oldowan hominins? Do Oldowan tools really demand know-how copying? Is there any other evidence that know-how copying was present? We here argue that this account, which we refer to as “Trajectory A”, may be a red herring, and formulate an alternative “Trajectory B” that resolves these dilemmas. Trajectory B invokes an overlooked group-level channel of cultural inheritance (the Social Protocell) whereby networks of cultural traits can be faithfully inherited and potentially undergo cumulative evolution, also when the underpinning cultural traits are apelike in not being transmitted via know-how copying (Latent Solutions). Since most preconditions of Trajectory B are present in modern-day Pan, Trajectory B may even have its roots considerably before Oldowan toolmaking. The cumulative build-up of networks of non-cumulative cultural traits is then argued to have produced conditions that both called for and afforded a gradual appearance of the ability to copy know-how, but considerably later than the Oldowan

    Reply to 'Chimpanzee helping is real, not a byproduct'

    Get PDF
    J.C. was supported in part by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 609819, project SOMICS.Publisher PDFPeer reviewe

    Testing the individual and social learning abilities of task-naĂŻve captive chimpanzees (Pan troglodytes sp.) in a nut-cracking task

    Get PDF
    Nut-cracking is often cited as one of the most complex behaviours observed in wild chimpanzees. However, the cognitive mechanisms behind its acquisition are still debated. The current null hypothesis is that the form of nut-cracking behaviour relies on variants of social learning, with some researchers arguing, more precisely, that copying variants of social learning mechanisms are necessary. However, to date, very few experiments have directly investigated the potentially sufficient role of individual learning in explaining the behavioural form of nut-cracking. Despite this, the available data provides some evidence for the spontaneous acquisition of nut-cracking by chimpanzees; later group acquisition was then found to be at least facilitated by (unspecified) variants of social learning. The latter findings are in line with both suggested hypotheses, i.e., that copying social learning is required and that other (non-copying) social learning mechanisms are at play. Here we present the first study which focused (initially) on the role of individual learning for the acquisition of the nut-cracking behavioural form in chimpanzees. We tested task-naĂŻve chimpanzees (N = 13) with an extended baseline condition to examine whether the behaviour would emerge spontaneously. After the baseline condition (which was unsuccessful), we tested for the role of social learning by providing social information in a step-wise fashion, culminating in a full action demonstration of nut-cracking by a human demonstrator (this last condition made it possible for the observers to copy all actions underlying the behaviour). Despite the opportunities to individually and/or socially learn nut-cracking, none of the chimpanzees tested here cracked nuts using tools in any of the conditions in our study; thus, providing no conclusive evidence for either competing hypothesis. We conclude that this failure was the product of an interplay of factors, including behavioural conservatism and the existence of a potential sensitive learning period for nut-cracking in chimpanzees. The possibility remains that nut-cracking is a behaviour that chimpanzees can individually learn. However, this behaviour might only be acquired when chimpanzees are still inside their sensitive learning period, and when ecological and developmental conditions allow for it. The possibility remains that nut-cracking is an example of a culture dependent trait in non-human great apes. Recommendations for future research projects to address this question are considered

    Modeling Imitation and Emulation in Constrained Search Spaces

    Get PDF
    Social transmission of behavior can be realized through distinct mechanisms. Research on primate social learning typically distinguishes two forms of information that a learner can extract from a demonstrator: copying actions (defined as imitation) or copying only the consequential results (defined as emulation). We propose a decomposition of these learning mechanisms (plus pure individual learning) that incorporates the core idea that social learning can be represented as a search for an optimal behavior that is constrained by different kinds of information. We illustrate our approach with an individual-based model in which individuals solve tasks in abstract “spaces” that represent behavioral actions, results, and benefits of those results. Depending on the learning mechanisms at their disposal, individuals have differential access to the information conveyed in these spaces. We show how different classes of tasks may provide distinct advantages to individuals with different learning mechanisms and discuss how our approach contributes to current empirical and theoretical research on social learning and culture.Human Evolutionary Biolog

    Cognitive mechanisms matter - but they do not explain the absence of teaching in chimpanzees

    Get PDF
    AbstractKline's functional categories for the evolution of teaching blur some valuable distinctions. Moreover, her account provides no answer to the question of why direct active teaching seems to be a uniquely human phenomenon.</jats:p

    Young children spontaneously invent wild great apes’ tool-use behaviors

    Get PDF
    The variety and complexity of human-made tools are unique in the animal kingdom. Research investigating why human tool use is special has focused on the role of social learning: while non-human great apes acquire tool-use behaviours mostly by individual (re-)inventions, modern humans use imitation and teaching to accumulate innovations over time. However, little is known about tool-use behaviours that humans can invent individually, i.e. without cultural knowledge. We presented 2- to 3.5-year-old children with 12 problem-solving tasks based on tool-use behaviours shown by great apes. Spontaneous tool use was observed in 11 tasks. Additionally, tasks which occurred more frequently in wild great apes were also solved more frequently by human children. Our results demonstrate great similarity in the spontaneous tool-use abilities of human children and great apes, indicating that the physical cognition underlying tool use shows large overlaps across the great ape species. This suggests that humans are neither born with special physical cognition skills, nor that these skills have degraded due to our species’ long reliance of social learning in the tool-use domain

    Chimpanzees’ (Pan troglodytes) problem-solving skills are influenced by housing facility and captive care duration

    Full text link
    Although a large body of primate cognition research is done in captive institutions, little is known about how much individuals from different facilities vary in their experiences and cognitive skills. Here we present the results of an experimental study investigating how physical cognitive skills vary between chimpanzees in relation to captive settings and their time in captivity. We tested 59 chimpanzees housed at two different captive facilities (a rehabilitation center (sanctuary) and a zoo) in three problem-solving tasks. Our results showed that chimpanzees at the two housing facilities significantly differed in overall task performance. On average, the sanctuary chimpanzees outperformed the chimpanzees housed at the zoo in the detour reaching task and the honey trap task. However, the zoo chimpanzees performed slightly better on average in the learning task. We propose that, for this particular sample, the documented differences result from a combination of factors, such as prior experience with cognitive testing, motivation levels and varying degrees of human exposure. Within the sanctuary sample, we found that chimpanzees who arrived at an earlier age at the sanctuary and had therefore spent a larger percentage of their lives in a captive environment, were better problem-solvers than those that arrived at a later age to the sanctuary. Thus, rehabilitation and time in captivity contributed to improved physical cognitive skills in sanctuary chimpanzees. Our results highlight the importance of studying intraspecific variation and the effect that previous experience and living conditions might have on physical cognitive skills in non-human apes. Accordingly, we should be cautious when extrapolating findings of cognitive studies from one population to the species as a whole

    Spontaneous reoccurrence of “scooping”, a wild tool-use behaviour, in naïve chimpanzees

    Get PDF
    Modern human technological culture depends on social learning. A widespread assumption for chimpanzee tool-use cultures is that they, too, are dependent on social learning. However, we provide evidence to suggest that individual learning, rather than social learning, is the driver behind determining the form of these behaviours within and across individuals. Low-fidelity social learning instead merely facilitates the reinnovation of these behaviours, and thus helps homogenise the behaviour across chimpanzees, creating the population-wide patterns observed in the wild (what here we call “socially mediated serial reinnovations”). This is the main prediction of the Zone of Latent Solutions (ZLS) hypothesis. This study directly tested the ZLS hypothesis on algae scooping, a wild chimpanzee tool-use behaviour. We provided naïve chimpanzees (n = 14, Mage = 31.33, SD = 10.09) with ecologically relevant materials of the wild behaviour but, crucially, without revealing any information on the behavioural form required to accomplish this task. This study found that naïve chimpanzees expressed the same behavioural form as their wild counterparts, suggesting that, as the ZLS theory predicts, individual learning is the driver behind the frequency of this behavioural form. As more behaviours are being found to be within chimpanzee’s ZLS, this hypothesis now provides a parsimonious explanation for chimpanzee tool cultures

    Limitations to the cultural ratchet effect in young children

    Get PDF
    Although many animal species show at least some evidence of cultural transmission, broadly defined, only humans show clear evidence of cumulative culture. In the current study, we investigated whether young children show the “ratchet effect,” an important component of cumulative culture—the ability to accumulate efficient modifications across generations. We tested 16 diffusion chains—altogether consisting of 80 children—to see how they solved an instrumental task (i.e., carrying something from one location to another). We found that when the chain was seeded with an inefficient way of solving the task, 4-year-olds were able to innovate and transmit these innovations so as to reach a more efficient solution. However, when it started out with relatively efficient solutions already (i.e., the ones that children in a control condition discovered for themselves), there were no further techniques invented and/or transmitted beyond that. Thus, young children showed the ratchet effect to a limited extent, accumulating efficient modifications but not going beyond the inventive level of the individual.PostprintPeer reviewe
    • 

    corecore