12,815 research outputs found

    The ionizing sources of luminous compact HII regions in the RCW106 and RCW122 clouds

    Full text link
    Given the rarity of young O star candidates, compact HII regions embedded in dense molecular cores continue to serve as potential sites to peer into the details of high-mass star formation. To uncover the ionizing sources of the most luminous and compact HII regions embedded in the RCW106 and RCW122 giant molecular clouds, known to be relatively nearby (2-4 kpc) and isolated, thus providing an opportunity to examine spatial scales of a few hundred to a thousand AU in size. High spatial resolution (0.3"), mid-infrared spectra (R=350), including the fine structure lines [ArIII] and [NeII], were obtained for four luminous compact HII regions, embedded inside the dense cores within the RCW106 and RCW122 molecular cloud complexes. At this resolution, these targets reveal point-like sources surrounded by nebulosity of different morphologies, uncovering details at spatial dimensions of <1000AU. The point-like sources display [ArIII] and [NeII] lines - the ratios of which are used to estimate the temperature of the embedded sources. The derived temperatures are indicative of mid-late O type objects for all the sources with [ArIII] emission. Previously known characteristics of these targets from the literature, including evidence of disk or accretion suggest that the identified sources may grow more to become early-type O stars by the end of the star formation process

    Photospheric properties and fundamental parameters of M dwarfs

    Full text link
    M dwarfs are an important source of information when studying and probing the lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning limit. Being the most numerous and oldest stars in the galaxy, they carry fundamental information on its chemical history. The presence of molecules in their atmospheres, along with various condensed species, complicates our understanding of their physical properties and thus makes the determination of their fundamental stellar parameters more challenging and difficult. The aim of this study is to perform a detailed spectroscopic analysis of the high-resolution H-band spectra of M dwarfs in order to determine their fundamental stellar parameters and to validate atmospheric models. The present study will also help us to understand various processes, including dust formation and depletion of metals onto dust grains in M dwarf atmospheres. The high spectral resolution also provides a unique opportunity to constrain other chemical and physical processes that occur in a cool atmosphere The high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide a unique opportunity to measure their fundamental parameters. We have performed a detailed spectral synthesis by comparing these high-resolution H-band spectra to that of the most recent BT-settl model and have obtained fundamental parameters such as effective temperature, surface gravity, and metallicity (Teff, log g and [Fe/H]) respectively.Comment: 15 pages, 10 figures, accepted for publication in A&

    Caracterização de dois perfis com horizonte antrópico (Terra Preta de Índio) no Lago do Limão - AM.

    Get PDF
    O trabalho teve por objetivo caracterizar dois perfis com horizonte antrópico no Lago do Limão, município de Iranduba

    High Resolution 4.7 um Keck/NIRSPEC Spectra of Protostars. I: Ices and Infalling Gas in the Disk of L1489 IRS

    Get PDF
    We explore the infrared M band (4.7 um) spectrum of the class I protostar L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide coverage spectrum at this wavelength of a low mass protostar observed to date (R=25,000; Dv=12 km/s). Many narrow absorption lines of gas phase 12CO, 13CO, and C18O are detected, as well as a prominent band of solid 12CO. The gas phase 12CO lines have red shifted absorption wings (up to 100 km/s), likely originating from warm disk material falling toward the central object. The isotopes and the 12CO line wings are successfully fitted with a contracting disk model of this evolutionary transitional object (Hogerheijde 2001). This shows that the inward motions seen in millimeter wave emission lines continue to within ~0.1 AU from the star. The colder parts of the disk are traced by the prominent CO ice band. The band profile results from CO in 'polar' ices (CO mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the 'apolar' component is, for the first time, resolved into two distinct components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices have probably experienced thermal processing in the upper disk layer traced by our pencil absorption beam: much of the volatile 'apolar' ices has evaporated and the depletion factor of CO onto grains is remarkably low (~7%). This study shows that high spectral resolution 4.7 um observations provide important and unique information on the dynamics and structure of protostellar disks and the evolution of ices in these disks.Comment: 11 pages, 6 figures Scheduled to appear in ApJ 568 n2, 1 April 200

    Resistência à penetração em cultivos de guaraná sob Latossolo Amarelo muito argiloso na Amazônia Central.

    Get PDF
    Este estudo teve como objetivo comparar a resistência à penetração do solo em áreas cultivadas com guaranazeiro e a floresta primária. Foram abertas trincheiras para observação do desenvolvimento do sistema radicular do guaranazeiro em áreas de cultivo sob Latossolo Amarelo muito argiloso na Amazônia Central

    Evaluation of Microencapsulation of The UFV-AREG1 Bacteriophage in Alginate-Ca Microcapsules using Microfluidic Devices

    Full text link
    The indiscriminate use of antibiotics and the emergence of resistant microorganisms have become a major challenge for the food industry. The purpose of this work was to microencapsulate the bacteriophage UFV-AREG1 in a calcium alginate matrix using microfluidic devices and to study the viability and efficiency of retention. The microcapsules were added to gel of propylene glycol for use as an antimicrobial in the food industry. The technique showed the number of the phage encapsulation, yielding drops with an average 100-250 μ\mum of diameter, 82.1 ±\pm 2% retention efficiency and stability in the gel matrix for 21 days. The gel added to the microencapsulated phage showed efficiency (not detectable on the surface) in reducing bacterial contamination on the surface at a similar level to antimicrobial chemicals (alcohol 70%). Therefore, it was possible to microencapsulate bacteriophages in alginate-Ca and apply the microcapsules in gels for use as sanitizers in the food industry.Comment: 8 pages, 5 figure
    corecore