21,349 research outputs found

    Fold-Saddle Bifurcation in Non-Smooth Vector Fields on the Plane

    Full text link
    This paper presents results concerning bifurcations of 2D piecewise-smooth dynamical systems governed by vector fields. Generic three parameter families of a class of Non-Smooth Vector Fields are studied and its bifurcation diagrams are exhibited. Our main result describes the unfolding of the so called Fold-Saddle singularity

    Sensitivity to SUSY Seesaw Parameters and Lepton Flavour Violation

    Full text link
    We address the constraints on the SUSY seesaw parameters arising from Lepton Flavour Violation observables. Working in the Constrained Minimal Supersymmetric Standard Model extended by three right-handed (s)neutrinos, we study the predictions for the branching ratios of lj→liγl_j \to l_i \gamma and lj→3lil_j \to 3 l_i channels. We impose compatibility with neutrino data, electric dipole moment bounds, and further require a successful baryon asymmetry of the Universe (via thermal leptogenesis). We emphasise the interesting interplay between θ13\theta_{13} and the LFV muon decays, pointing out the hints on the SUSY seesaw parameters that can arise from measurements of θ13\theta_{13} and LFV branching ratios. This is a brief summary of the work of Ref. \cite{Antusch:2006vw}.Comment: 6 pages, 4 figures. Presented at 5th Flavor Physics and CP Violation Conference (FPCP 2007), Bled, Slovenia, 12-16 May 200

    On the Evaluation of the Mechanical Behaviour of Structural Glass Elements

    Get PDF
    Glass can be considered to be a high-technology engineering material with a multifunctional potential for structural applications. However, the conventional approach to the use of glass is often based only on its properties of transparency and isolation. It is thus highly appropriate and necessary to study the mechanical behaviour of this material and to develop adequate methods and models leading to its characterisation. It is evident that the great potential of growth for structural glass applications is an important opportunity of development for the glass industry and the building/construction sectors. The work presented in this paper is a reflection of this conclusion. The authors shortly present the state-of-the-art on the application of glass as a structural element in building and construction, and refer to other potential fields of application and available glass materials. The experimental procedures and methods adopted in three-point bending tests performed on 500 × 100 [mm2] float, laminated and tempered glass specimens with thicknesses between 4 and 19 mm are thoroughly described. The authors evaluated the mechanical strength and stiffness of glass for structural applications. This work contributes to a deeper knowledge of the properties of this material

    Performance of dynamical decoupling in bosonic environments and under pulse-timing fluctuations

    Get PDF
    We study the suppression of qubit dephasing through Uhrig dynamical decoupling (UDD) in nontrivial environments modeled within the spin-boson formalism. In particular, we address the case of (i) a qubit coupled to a bosonic bath with power-law spectral density, and (ii) a qubit coupled to a single harmonic oscillator that dissipates energy into a bosonic bath, which embodies an example of a structured bath for the qubit. We then model the influence of random time jitter in the UDD protocol by sorting pulse-application times from Gaussian distributions centered at appropriate values dictated by the optimal protocol. In case (i) we find that, when few pulses are applied and a sharp cutoff is considered, longer coherence times and robust UDD performances (against random timing errors) are achieved for a super-Ohmic bath. On the other hand, when an exponential cutoff is considered a super-Ohmic bath is undesirable. In case (ii) the best scenario is obtained for an overdamped harmonic motion. Our study provides relevant information for the implementation of optimized schemes for the protection of quantum states from decoherence.Comment: 8 pages, 5 figure

    An ALMA study of the Orion Integral Filament : I. Evidence for narrow fibers in a massive cloud

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Aim. We have investigated the gas organization within the paradigmatic Integral Shape Filament (ISF) in Orion in order to decipher whether or not all filaments are bundles of fibers. Methods. We combined two new ALMA Cycle 3 mosaics with previous IRAM 30m observations to produce a high-dynamic range N 2H + (1-0) emission map of the ISF tracing its high-density material and velocity structure down to scales of 0.009 pc (or ~2000 AU). Results. From the analysis of the gas kinematics, we identify a total of 55 dense fibers in the central region of the ISF. Independently of their location in the cloud, these fibers are characterized by transonic internal motions, lengths of ~0.15 pc, and masses per unit length close to those expected in hydrostatic equilibrium. The ISF fibers are spatially organized forming a dense bundle with multiple hub-like associations likely shaped by the local gravitational potential. Within this complex network, the ISF fibers show a compact radial emission profile with a median FWHM of 0.035 pc systematically narrower than the previously proposed universal 0.1 pc filament width. Conclusions. Our ALMA observations reveal complex bundles of fibers in the ISF, suggesting strong similarities between the internal substructure of this massive filament and previously studied lower-mass objects. The fibers show identical dynamic properties in both low- and high-mass regions, and their widespread detection in nearby clouds suggests a preferred organizational mechanism of gas in which the physical fiber dimensions (width and length) are self-regulated depending on their intrinsic gas density. Combining these results with previous works in Musca, Taurus, and Perseus, we identify a systematic increase of the surface density of fibers as a function of the total mass per-unit-length in filamentary clouds. Based on this empirical correlation, we propose a unified star-formation scenario where the observed differences between low- and high-mass clouds, and the origin of clusters, emerge naturally from the initial concentration of fibers.Peer reviewedFinal Published versio

    The ionizing sources of luminous compact HII regions in the RCW106 and RCW122 clouds

    Full text link
    Given the rarity of young O star candidates, compact HII regions embedded in dense molecular cores continue to serve as potential sites to peer into the details of high-mass star formation. To uncover the ionizing sources of the most luminous and compact HII regions embedded in the RCW106 and RCW122 giant molecular clouds, known to be relatively nearby (2-4 kpc) and isolated, thus providing an opportunity to examine spatial scales of a few hundred to a thousand AU in size. High spatial resolution (0.3"), mid-infrared spectra (R=350), including the fine structure lines [ArIII] and [NeII], were obtained for four luminous compact HII regions, embedded inside the dense cores within the RCW106 and RCW122 molecular cloud complexes. At this resolution, these targets reveal point-like sources surrounded by nebulosity of different morphologies, uncovering details at spatial dimensions of <1000AU. The point-like sources display [ArIII] and [NeII] lines - the ratios of which are used to estimate the temperature of the embedded sources. The derived temperatures are indicative of mid-late O type objects for all the sources with [ArIII] emission. Previously known characteristics of these targets from the literature, including evidence of disk or accretion suggest that the identified sources may grow more to become early-type O stars by the end of the star formation process

    Atomic jet from SMM1 (FIRS1) in Serpens uncovers non-coeval binary companion

    Full text link
    We report on the detection of an atomic jet associated with the protostellar source SMM1 (FIRS1) in Serpens. The jet is revealed in [FeII] and [NeII] line maps observed with Spitzer/IRS, and further confirmed in HiRes IRAC and MIPS images. It is traced very close to SMM1 and peaks at ~5 arcsec" from the source at a position angle of $\sim 125 degrees. In contrast, molecular hydrogen emission becomes prominent at distances > 5" from the protostar and extends at a position angle of 160 degrees. The morphological differences suggest that the atomic emission arises from a companion source, lying in the foreground of the envelope surrounding the embedded protostar SMM1. In addition the molecular and atomic Spitzer maps disentangle the large scale CO (3-2) emission observed in the region into two distinct bipolar outflows, giving further support to a proto-binary source setup. Analysis at the peaks of the [FeII] jet show that emission arises from warm and dense gas (T ~1000 K, n(electron) 10^5 - 10^6 cm^-3). The mass flux of the jet derived independently for the [FeII] and [NeII] lines is 10^7 M(sun)/yr, pointing to a more evolved Class~I/II protostar as the driving source. All existing evidence converge to the conclusion that SMM1 is a non-coeval proto-binary source.Comment: 10 pages, 7 figures, 1 table. Accepted for publication in Astronomy \& Astrophysic

    Synthesis of new azole phosphonate precursors for fuel cells proton exchange membranes

    Get PDF
    Herein we present the synthesis and characterization of new phosphonate-, bisphosphonate- and hydroxybisphosphonatebenzimidazole derivatives substituted at the N-1 position and new regioisomers phosphonate-, bisphosphonate-, and hydroxybisphosphonatebenzotriazole derivatives substituted at N-1 or N-2 positions. The compounds were characterized by NMR and IR spectroscopies, and mass spectrometry (low and high resolution) allowing the assignment of their structure, including the identification of regioisomers. These new azole monomers will be precursors for a mesoporous silica host to produce novel membrane materials with high proton conductivity for intermediate temperature proton exchange membrane fuel cells
    • …
    corecore