15,987 research outputs found

    Spontaneous CP Violation in the Next-to-Minimal Supersymmetric Standard Model Revisited

    Get PDF
    We re-examine spontaneous CP violation at the tree level in the context of the next-to-minimal supersymmetric standard model (NMSSM) with two Higgs doublets and a gauge singlet field. We analyse the most general Higgs potential without a discrete Z_3 symmetry, and derive an upper bound on the mass of the lightest neutral Higgs boson consistent with present experimental data. We investigate, in particular, its dependence on the admixture and CP-violating phase of the gauge singlet field, as well as on tan(beta). To assess the viability of the spontaneous CP violation scenario, we estimate epsilon_K by applying the mass insertion approximation. We find that a non-trivial flavour structure in the soft-breaking A terms is required to account for the observed CP violation in the neutral kaon sector. Furthermore, combining the minimisation conditions for spontaneous CP violation with the constraints coming from K0-K0bar mixing, we find that the upper bound on the lightest Higgs-boson mass becomes stronger. We also point out that the electric dipole moments of electron and neutron are a serious challenge for SUSY models with spontaneous CP violation.Comment: 19 pages, LaTeX2e, 5 figures; matches the published versio

    Future dynamics in f(R) theories

    Full text link
    The f(R)f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of f(R)f(R) gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of f(R)f(R) gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between f(R)f(R) gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two f(R)f(R) gravity theories, namely the well known f(R)=R+αRnf(R) = R + \alpha R^{n} gravity and another by A. Aviles et al., whose motivation comes from the cosmographic approach to f(R)f(R) gravity. To this end we perform a detailed numerical study of the future dynamic of these flat model in these theories taking into account the recent constraints on the cosmological parameters made by the Planck team. We show that besides being powerful for discriminating between f(R)f(R) gravity theories, the future dynamics technique can also be used to determine the fate of the Universe in the framework of these f(R)f(R) gravity theories. Moreover, there emerges from our numerical analysis that if we do not invoke a dark energy component with equation-of-state parameter ω<1\omega < -1 one still has dust flat FLRW solution with a big rip, if gravity deviates from general relativity via f(R)=R+αRnf(R) = R + \alpha R^n . We also show that FLRW dust solutions with f<0f''<0 do not necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results are emphasized, connection with the recent literature improved, typos corrected, references adde

    A review of biomass thermal analysis, kinetics and product distribution for combustion modeling: from the micro to macro perspective

    Get PDF
    Driven by its accessibility, extensive availability, and growing environmental consciousness, solid biomass has emerged as a viable alternative to enhance the diversity of renewable energy sources for electricity generation. To understand the phenomena involved in solid biomass conversion, it is necessary not only to understand the stages of the biomass combustion process but also to understand specifically the kinetics of the reaction and the release of the volatiles. The present work presents an overview of the existing literature on several topics related to the biomass combustion process, its characterization, as well as strategies to develop simple and effective models to describe biomass conversion with a view to the future development of numerical simulation models. Since the focus of most of the investigations is the development of a numerical model, a summary and identification of the different model assumptions and problems involved in thermal analysis experiments are presented. This literature review establishes the significance and credibility of the research, providing the main concepts and assumptions with a critique on their validity. Hence, this work provides specific contributions from a multi-scale perspective which can further be extended to provide insights into the design and optimization of biomass combustion technologies, such as boilers and furnaces.This work was supported by the Portuguese Foundation for Science and Technology (FCT) within the R&D Units Project Scope UIDB/00319/2020 (ALGORITMI), and R&D Units Project Scope UIDP/04077/2020 (MEtRICs)

    A CFD study of a pMDI plume spray

    Get PDF
    Uncorrected proofAsthma is an inflammatory chronic disease characterized by airway obstructions disorders. The treatment is usually done by inhalation therapy, in which pressurized metered-dose inhalers (pMDIs) are preferred devices. The objective of this paper is to characterize and simulate a pMDI spray plume by introducing realistic factors through a computational fluid dynamics (CFD) study. Numerical simulations were performed with Fluent® software, by using a three-dimensional “testbox” for room environment representation. A salbutamol/HFA-134a formulation was used for characterization, whose properties taken as input for the CFD simulations. Spray droplets were considered to be composed by ethanol, salbutamol and HFA-134a. Propellant evaporation was taken into consideration, as well as, drag coefficient correction. Results showed an air temperature drop of 3.3 °C near the nozzle. Also, an increase in air velocity of 3.27 m/s was noticed. The CFD results seem to be in good agreement with Dunbar (1997) data on particle average velocity along the axial distance from the nozzle.National Funds-Portuguese Foundation for Science and Technology, under Strategic Project PEst-C/EME/UI4077/2011 and PEst-OE/EME/299UI0252/201

    Photospheric properties and fundamental parameters of M dwarfs

    Full text link
    M dwarfs are an important source of information when studying and probing the lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning limit. Being the most numerous and oldest stars in the galaxy, they carry fundamental information on its chemical history. The presence of molecules in their atmospheres, along with various condensed species, complicates our understanding of their physical properties and thus makes the determination of their fundamental stellar parameters more challenging and difficult. The aim of this study is to perform a detailed spectroscopic analysis of the high-resolution H-band spectra of M dwarfs in order to determine their fundamental stellar parameters and to validate atmospheric models. The present study will also help us to understand various processes, including dust formation and depletion of metals onto dust grains in M dwarf atmospheres. The high spectral resolution also provides a unique opportunity to constrain other chemical and physical processes that occur in a cool atmosphere The high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide a unique opportunity to measure their fundamental parameters. We have performed a detailed spectral synthesis by comparing these high-resolution H-band spectra to that of the most recent BT-settl model and have obtained fundamental parameters such as effective temperature, surface gravity, and metallicity (Teff, log g and [Fe/H]) respectively.Comment: 15 pages, 10 figures, accepted for publication in A&

    Numerical modeling and optimization of an air handling unit

    Get PDF
    Concerns about the efficiency of Heating, Ventilating, and Air Conditioning systems, including Air Handling Units (AHUs), started in the last century due to the energy crisis. Thenceforth, important improvements on the AHUs performance have emerged. Among the various improvements, the control of the AHUs and the redesign of the fans are the most important ones. Although, with increasingly demanding energy efficiency requirements, other constructive solutions must be investigated. Therefore, the objective of this work is to investigate, using a computational fluid dynamics (CFD) tool, the fluid flow inside an AHU and to analyze different constructive solutions in order to improve the AHU performance. The numerical model provided a reasonable agreement with the experimental results in terms of air flow rate, despite the assumed simplifications. Regarding the constructive solution concept, the CFD results for the two different flow control units (FCUs) showed improvements in terms of fan static pressure rise. Under real conditions, improvements of 15.1% when compared with the case without the FCU were obtained. Nevertheless, it was concluded that the axial component of the air velocity, at the fan exit, can have a determinant impact on the FCU viability. Finally, an improved FCU geometry, with a new body shape, which resulted in an additional improvement of 6.1% in the fan static pressure rise.The second author would like to express his gratitude for the support given by FCT through the Grant SFRH/BD/130588/2017

    On Exact and Approximate Solutions for Hard Problems: An Alternative Look

    Get PDF
    We discuss in an informal, general audience style the da Costa-Doria conjecture about the independence of the P = NP hypothesis and try to briefly assess its impact on practical situations in economics. The paper concludes with a discussion of the Coppe-Cosenza procedure, which is an approximate, partly heuristic algorithm for allocation problems.P vs. NP , allocation problem, assignment problem, traveling salesman, exact solution for NP problems, approximate solutions for NP problems, undecidability, incompleteness
    corecore