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Abstract

We discuss in an informal, general audience style the da Costa–Doria
conjecture about the independence of the P = NP hypothesis and try to
briefly assess its impact on practical situations in economics. The paper
concludes with a discussion of the Coppe-Cosenza procedure, which is an
approximate, partly heuristic algorithm for allocation problems.
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1 Introduction

We deal here with NP–hard and NP–complete problems in economics. The
most famous problem in the NP class is the traveling salesman problem : given
N cities connected by a web of roads, which is the shortest route among them?
Which route is such that it has length at least equal to, or larger than, some
fixed value l ?

In the first case we have an example of a NP–hard problem; in the second
case, of a NP–complete problem.

Another example is the family of allocation problems. We have sites geo-
graphically dispersed over some region, and scarce resources to be distributed
among them. We want to do it efficiently (for some previously established crite-
ria of efficiency) and again can either impose an optimizing condition (which will
make it into a NP hard problem) or fix some efficiency level (the NP complete
case).

Both problems have strong import on practical, everyday economic situa-
tions, yet as we show here their roots appear to go deep in the foundations of
mathematics and of computer science.

(Definitions of the main concepts appear in the course of the paper.)

Structure of the paper

This paper is divided into three parts. After a brief comment on the histor-
ical background together with another brief survey, of a few applications of
NP–completeness to economics, we reach part two, which describes the ideas
presented in [15] in a so to say “general audience” style. It is an approach to
the P vs. NP question that leads to the conjecture that P = NP and P < NP
adequately formalized within a strong axiomatic theory are independent of that
axiomatic framework. An appendix gives a more technical approach to the
matter.

Finally the third part describes two algorithms to deal with NP–complete
problems. One is an exact algorithm which follows from our conjecture about P
vs. NP ; after that we exhibit an approximate, but very effective semi–heuristic
procedure for the solution of NP–complete and NP–hard problems.

Algorithms for problems in the NP class

The literature about algorithms for NP–complete and NP–hard problems is
vast and we won’t touch it here. We will restrict our attention to the two
specific examples we’ve just mentioned:

• A nearly polynomial algorithm for NP–complete problems? The first ex-
ample we discuss directly originates in the analysis that led to da Costa
et al. approach [16], but has never been much explored in a practical con-
text. If P = NP and P < NP are independent of a strong axiom system
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such as Zermelo–Fraenkel set theory,1 then there is a nearly polynomial
algorithm for NP–complete problems. This result goes back to O’Donnell
[24] and is again presented in detail but in a different form in [5].

• An approximate algorithm. The second example is the coppe–cosenza
algorithm, which expands the Italian masterli procedure, and is an ap-
proximate, partly heuristic solution technique which has been already
tested in many real world situations.
The coppe–cosenza procedure was originally conceived to deal with allo-
cation problems, but has been applied to several situations, from medicine
to architecture, and can be modified to deal with any kind of problem in
the NP–class [4].

Recently S. Zambelli pointed out [33] that an user–friendly version of FAD’s
views on the P vs. NP question was needed [15], especially because it would
also be of interest to an audience of economists. The same co–author has collab-
orated with the team that developed the so–called coppe–cosenza algorithm
for the solution of allocation problems and planning strategies [4] and again
would like to present that technique to a wider audience, while trying to eval-
uate its practical and theoretical impacts. The present paper originated in a
discussion among Cosenza, Doria and the last author, Teixeira, and fuses both
intents.

Undecidability and incompleteness in everyday economic
situations?

“Naturally undecidable” problems in economics, that is problems where unde-
cidability arises out of the very formulation of the question, have been investi-
gated by K. V. Velupillai since the early 1990s [29]. The issue of whether we
have undecidability, incompleteness — uncomputable stuff in general, so to say
— in real world economic settings has already been touched upon in [3]. From
the da Costa–Doria approach [15] which is still quite incomplete, it would fol-
low, e.g., that for very simple economic situations we wouldn’t be able to prove
within reasonable axiom systems that a given procedure leads to a minimum
cost. Would that fact result in some actual difficulty or obstacle which affects
economic policies? This is one of the main questions which underlie the present
paper. As stressed by Zambelli ([33], p. 3), we adress here the quite basic issue
of “what an economic system can and cannot compute.”

This is the gist of our work.

2 Notes on the history of NP–completeness

This section is not intended as a history of NP–completeness. Our purpose is
merely to highlight a few steps that are relevant, in our opinion, in the devel-
opment of these concepts.

1We elaborate a bit on the Zermelo–Fraenkel axioms in the later sections.
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While we can trace the traveling salesman problem back to Sir William
Rowan Hamilton in the 19th century, the first formulation of TSP is usually
credited to Karl Menger in 1932 [23]. Menger’s formulation of the TSP is quite
straightforward:2

We call the Messenger Problem [. . . ] the task of finding, for a finite
number of points whose pairwise distances are known, the shortest
path connecting the points. The problem is naturally solvable by
making a finite number of trials. No rules are known that would
reduce the number of trials below the number of permutations of the
given point.

The name “traveling salesman problem” makes one of its first appearances
nearly two decades later, in a 1949 report prepared by Julia Robinson [25] for the
rand Corporation. Then follows Gödel’s much–quoted letter to von Neumann
in March 1956 [30] where the problem is again formulated, now in the context
of a Boolean satisfiability problem.

Cook and Karp (see [22] for references and details) characterize NP–compl-
ete problems in the early 1970s; they are seen to pop up everywhere in both
concrete and abstract situations.

One may now state the P = NP question:

Is there a polynomial algorithm that settles all instances of some
NP–complete problem?

We must also briefly mention two important contributions to NP–complete-
ness in economics: first, the Koopmans and Beckmann [21] consideration of
assignment problems, and, last but not least, Herbert Simon’s [32].

Velupillai gives an explicit, crystal–clear example of how a TSP problem
can be converted into a Boolean satisfiability problem [30]. We have already
mentioned the TSP problem and allocation problems as situations which lead
do NP–complete problems. We now give a few more examples to support our
case.3

3 NP completeness in economics

Do problems in the NP class matter for economics? They do — insofar as
assignment or allocation problems, scheduling problems etc do appear in actual
planning situations. Moreover, if the da Costa–Doria conjecture on NP com-
pleteness holds, then there will be lots of algorithmically undecidable situations
in the actual consideration of NP–complete and NP–hard problems.

NP–complete and NP–hard problems are in general easily recognized be-
cause of the following features:

2We quote a translation of Menger’s text.
3We thank V. Velupillai for an exacting and detailed analysis of the history of NP–

completeness as it refers to economics.
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• The obvious search for a solution involves a search over some combination
or permutation of the elements involved.

• For the NP–hard case, we look for a combination of permutation of el-
ements that maximize or minimize some condition K, which is easily
checked.

• For the NP–complete case, there is a condition K ′ which must be satisfied
by the solution; again it is easy to check it.

This is the general picture. Now let’s go back to economics. Several theoreti-
cal situations in economics may also depend on the solution of a NP–complete
problem. Consider the following case of an explicitly given game with coali-
tions:4

• We have a n–person game.

• We have some criterion K that has to be satisfied by coalitions in the
game (say, returns for the coalitions).

In the general case the obvious solution technique is to examine all (explic-
itly given) possible coalitions in order to check for K, and that demands an
exponential effort.

Yet if given some solution, we test for K, we’ll see that it usually is a
polynomial task. (This depends on the way we define K, but for most practical
situations testing for K is “fast,” that is, it can be made in polynomial time on
the length of the input.)

There is a caveat here: in the general case, recursively presented competitive
games are undecidable as implied by a result of A. Lewis — see [3] for a review.
Also, in a very general context, finite games, be they competitive or not, are
undecidable [3, 28]. That’s the reason for the restrictive condition we added
here, that of an explicitly given game.

More specific examples are now given. They show the widespread presence
of NP–completeness in economics:

• Computation of Nash equilibria. Nash games are undecidable in the gen-
eral case, a fact which is known since the Lewis’ results obtained in the
late 1980s (see the references in [3]; see also [14, 28]). However even for the
simple case of explicitly given outcomes of games we get NP–completeness
[2].

We can offer an intuition about it: in order to compute Nash equilibria one
must consider all possible combinations of players and strategies, so that
out of the combinatorial explosion of alternatives we have the exponential
growth typical of NP hard and NP complete problems. If we ask for
a minimum return in the game, then to check whether some choice of
strategies satisfies it is in general a polynomial task. Therefore the actual
computation of Nash equilibria may then turn out to be a hard problem.

4The “explicitly given” clause is essential here.
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• Risk management.5 The choice of a portfolio given simultaneous risk and
return constraints is also NP–complete, for we must consider all possi-
ble securities combinations and see whether they satisfy the desired con-
straints or not.

This fact has led Huberman and coworkers to the suggestion (among oth-
ers) that we should look at NP–completeness from the viewpoint of eco-
nomics [19]. The idea is a very interesting one, for in most tasks that lead
to NP–complete problems we can evaluate each alternative in terms of
gains or in terms of risks incurred. For instance, given the current status
of dna research, and given the parents’ genetic makeup, if we define a
level of risk of defects in the possible offspring, we have a NP–complete
problem which can be evaluated in economic terms, that is, in terms of
gains (the children) and risks (namely inherited defects and dseases).

• Shapley values. NP–complete questions appear in the theory of coopera-
tive games in general.6 A recent example is given in [8], which also lists
related references.

The chief result in the Conitzer and Sandholm paper is the proof that core
membership in an explicitly given cooperative game is NP–complete, a
result that mirrors an earlier result by Cheng and Papadimitriou [17].
However the calculation of Shapley values is easy, again as shown by the
same authors Deng and Papadimitriou.

So, we believe that our case for the relevance of NP–hardness and NP–
completeness for economists has been successfully pleaded. Not only the class
of NP problems do matter for economics: we can even follow the converse path
and look at some NP problems from the viewpoint of typical economic concepts
such as gain, risk or value.

4 The da Costa–Doria approach to P vs. NP

We now sketch the main ideas presented in the da Costa–Doria paper ([15]; see
also [7]), which support the conjecture that P = NP and its negation P < NP
are independent of quite strong consistent axiomatic systems (the authors argue
for Zermelo–Fraenkel axiomatic set theory with the Axiom of Choice). It is
known that if independence holds then P < NP will be true in the standard
world for arithmetic, that is, in the real world of computers and the like.

Required concepts from mathematical logic and computer science can be
found in [3]. We will essentially need a few intuitions about Turing machines,
plus some results on logic which can be found in the reference.

5We use the concept of risk management as in [18].
6The authors thank V. Velupillai for reminding them of this application. For detailed

discussions of complexity in economics see Velupillai’s recent book [31].
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Polynomial Turing machines

Turing machines are supposed to input sequences of 0s and 1s such as, say,
001010. They are called bit strings. A polynomial Turing machine (or poly
machine) is a Turing machine whose operation time is bounded by some poly-
nomial on the length of the input string. (The length of a string is the number
of 0s and 1s in it; given a bit string x, its length is noted |x|.)

The NP class of problems and the P = NP conjecture

NP stands for “nondeterministic polynomial”; we’ll clarify the meaning of that
later on.7 Problems in the NP class are described by the slogan:

If you know the solution for a problem in NP then you can test for
(check) it very fast. However if you don’t know the solution then all
known algorithms are such that it is very hard (it takes a long long
time) to get one solution in the general case.

More precisely: they are easy to check because they can be checked by a poly
machine. They are hard to find because in the general case nobody knows an
algorithm for it which is polynomial, i.e., can be implemented by a poly machine.
Then follows the P = NP question (this equation means, NP problems are
solvable by poly machines):

Is there a poly machine that settles all instances of some NP prob-
lem?

It is known that the so–called nondeterministic poly (that is, NP–) ma-
chines can settle any NP problem in polynomial time, whereas the use of the
abbreviation NP to denote that class of problems [22].

Formally, a problem NPH is NP–hard if and only if there is a polynomial
Turing machine that reduces some NP–complete problem to it. This essentially
means that if we can solve NPH , then we can also settle the NP–complete
problem we started from, modulo a “fast,” polynomial computational map.
Example:

• NP–complete. Get a route that goes through N cities, with length l ≤ L,
L fixed.

Notice that depending on L, there may not be such a route.

• NP–hard. Get the minimal length route l that goes through N cities.

This is an optimization problem.

7Basically this refers to a machine which can process an input in simultaneous parallel
procedures.
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On the da Costa–Doria conjecture for P vs. NP

The kernel of the da Costa–Doria approach to the P vs. NP problem has to
do with the behavior of the so–called “counterexample function to P = NP .”
Let’s describe it:

• We start from the usual Gödel numbering to all Turing machines. (Given
each Turing machine M there is an integer eM, its Gödel number, that
codes the machine’s program [22, 26].)

• Select some NP–complete problem, which is kept fixed. Define the coun-
terexample function f :

– If eM codes a nonpolynomial machine, then put f(eM) = 0.

– If eM codes a polynomial Turing machine then f(eM) = first instance
(if any) of our previously fixed NP–complete problem so that ma-
chine M fails to output a correct answer to the problem.

– If that never happens, then f(eM) = undefined and {eM} polyno-
mially settles our fixed NP–complete problem, and any other NP–
complete problem, modulo a polynomial algorithmic transformation.

The counterexample function f lists all first failures to correctly solve some
problem in an NP–complete example. If there is some algorithm that polyno-
mially settles all instances of some NP–complete problem, then f is undefined
at that algorithm. Now it has long been asserted as a folklore fact:

The counterexample function f grows in its peaks beyond all intu-
itively total recursive functions.

This means that it grows at least as fast as the Busy Beaver function, and
that it is a noncomputable function. But we can make a trick and transform
that intractable function f into a recursive function f which is called the BGS
counterexample function [1]. The BGS function f is defined over the BGS poly-
nomial Turing machines. A BGS poly machine is a Turing machine coupled
to a clock. The machines inputs a binary string, the clock evaluates out of
the input’s length some polynomial bound and begins to count the machine’s
operating steps. Just before it exceeds the bound the clock shuts down the
machine, if it hasn’st stopped before. Then the output is the value computed if
the machine stops before the clock shuts it down, or zero otherwise.

All BGS machines are polynomial Turing machines, as the clock can be
simulated by some subroutine; and given any polynomial Turing machine there is
a BGS machine that computes the same recursive function as the given machine.
The BGS set is a recursive set.

But notice that we can expand the concept and define several BGS–like sets
which are näıvely equivalent to the original BGS set. For instance:

• Define a scale of functions within our theory, say, ZFC.
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• A scale of functions is an ordered set F0 < F|1 < F2 < . . ., where for i < j,
Fi is dominated by Fj .

• Moreover we require that the diagonal function given by:

F = {F0(0), F1(1), F2(2), . . .}

while intuitively recursive and total, cannot be proved to be so in ZFC.

Such scales exist both in Peano Arithmetic (PA) and in ZFC.
We can define a BGS–like set as follows: form all pairs of Turing machines

coupled to clocks that operate according to a polynomial |x|Fk(n) +Fk(n), where
|x| is the length of the input binarily coded. This extended BGS set looks like
an infinite collection of the original BGS sets, each one with the exponent in the
clock given by some Fk. The advantage? Large numbers are coded by a much
shorter sequence of binary digits, namely the (fixed) program for Fk plus the
binary version of n, instead of the full, explicitly written value of Fk(n). The
counterexample function f over such a set will be partial recursive, and näıvely
total iff P < NP . However is it provably total in ZFC? We suspect that it isn’t
so.

Yet there is now a surprising result. Consider some strong axiomatic theory,
like ZFC (Zermelo–Fraenkel set theory with the Axiom of Choice). Then the
following holds:

The sentence: “f is total, if and only if f is total” is independent of
the ZFC axioms, supposed consistent.

(The equivalence holds true of the standard model for arithmetic.) The inde-
pendence result holds even if we strengthen ZFC with strong axioms such as
large cardinal axioms.

Da Costa and Doria conjecture that the sentences P = NP and P < NP
will turn out to be independent of such strong axiom systems.

5 The O’Donnell exact nearly efficient algorithm
for NP problems

The following result depends on the conjecture already stated in this paper:

Both P = NP and P < NP are independent of the axioms of ax-
iomatic set theory,8 supposed consistent.

Then there is a possibly quite efficient but not very much explored algorithm
for those problems. It was first presented in 1979 [24] and then reintroduced in
1991 [5]. The present version follows [16].

The algorithm is exponential, but depends on an extremely slow growing
function, and as such will be polynomial for all practical purposes, given the
independence conjecture. (More about it at the end of this section.)

8That is, ZFC axiomatic set theory.
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We will require the already mentioned BGS set of machines [1]. A BGS
machine is a Turing machine coupled to a clock (which is also a Turing machine).
One inputs a string x of length |x| to the machine and to the clock. The clock
computes some polynomial function of it, say, |x|a + b, for a, b, positive integers,
and watches the operation steps of the coupled Turing machine. The moment
the machine reaches step |x|a + b, the clock shuts down the operation of the
Turing machine (of course if it has already stopped and given some output, this
won’t happen).

One usually agrees that the output of a shutting–down operation is zero, for
zero is a “failed” answer. The couple Turing machine + clock is of course a poly
machine, and every poly machine can be written in that form. So the BGS set
adequately represents all poly machines but doesn’t include all of them.

We can also form exotic BGS sets, say, BGSF, where the clock bound is given
by |x|F(a) + F(b). The counterexample function over the exotic set is recursive
(as any such BGS set is intuitively recursive), and is noted fF.

The O’Donnell algorithm

We can now describe the O’Donnell quasi–polynomial algorithm for an NP
problem. We consider the exotic counterexample function fF to P = NP ,
restricted to the exotic BGS set, BGSF. (But we will write f for short here.)

• We suppose independence and we argue in the intuitive world of arith-
metic, which is also the real world of computers and the like.

• We consider the set of all problems in the NP class. We restrict our
attention to discrete problems, which turn out to be enumerable, and we
consider both NP–hard and NP–complete problems, that is we include
those that are unsatisfiable.

• Consider the poly Turing machine V(x, s), where V(x, s) = 1 if and only
if s satisfies x, and V(x, s) = 0 if and only if s doesn’t satisfy x.

That machine is polynomial, as it checks, given some possible solution for
our problem, wheter it fits the picture or not.

• Consider the enumeration of the BGSF [1] machines, P0, P1, P2, . . ..

• Consider x, the binary code for a problem in NP .

• Alternatively check for V(x, 0), V(x, 1), . . . up to — if it ever happens —
some s so that V(x, s) = 1; or,

• Input x to P0, P1, P2, . . . up to the first Pj so that Pj(x) = sj and sj

satisfies x.

Notice that the index j = f−1(x).
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• Now, if f is fast–growing, then as the operation time of Pj is bounded by
|x|k + k, we have that k ≤ j, and therefore it grows as f−1(x). This will
turn out to be a very slowly growing function.

More precisely, it will have to be tested up to j, that is the operation time
will be bound by f−1(x)(|x|f−1(x) + f−1(x)).

Then either x is unsatisfiable — and therefore one will have to test all possi-
ble s ad infinitum — or, if satisfiable, operation time has the nearly polynomial
time given above. This means that if independence holds, then we will have
something that might be informally written as P ≈ NP — there are nearly
polynomial algorithms. (To deal with the unsatisfiable case we simply put some
bound that tops f−1(x)(|x|f−1(x) + f−1(x)) above on the operation time of our
algorithm, and anything that goes beyond it is rejected.)

Notice that the actual bound is still weaker, as one should in fact use the
(noncomputable) counterexample function f instead of f.

Undecidability and incompleteness

Given the independence hypothesis, we cannot prove in our theory S that the
algorithm performs in an adequate way, even if it is clear from the preceding
intuitive analysis. Does this affect actual economic situations? We address this
issue at the end of our discussion.

Other well–behaved algorithms

There is a piece of good news here, which does not depend on the independence
hypothesis of da Costa and Doria: for the typical situation in the Satisfiability
Problem (sat), the usual exponential algorithm based on truth–table calcula-
tions is polynomial.

Let’s elaborate a bit on that:

• A Boolean expression in conjunctive normal form (the usual fare for sat)
with n propositional variables generates a truth–table that can be coded
by a 2n–bit binary string.

• Given any 2n–bit binary string there is a corresponding Boolean expression
in sat.

• In the most frequent situation, the truth–table thus represented will be
Chaitin incompressible, and therefore the corresponding Boolean expres-
sion will be of length of the order of 2n.

• Thus the usual truth–table algorithm will input a code for the Boolean
expression that is about as long as its output.

The truly nasty cases for the truth–table algorithm are infrequent.
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6 The coppe–cosenza procedure

For a review of approximation techniques for NP–hard and NP–complete prob-
lems see [20].

The coppe–cosenza technique for approximate solutions of allocation prob-
lems is now briefly described [9]. It expands an earlier Italian model, the mas-
terli model (Modelo di Assento Territoriale e Localizzazione In-
dustriale) which was conceived and applied in the early 1970s. The coppe–
cosenza procedure is partly heuristic and uses a fuzzy–logic approach in its
handling of data. It is widely used in locational studies in Brazil [4] and in
dealing with allocation problems from economics and engineering to medicine
[12, 13]; empirical data support the contention that it in general gives better,
more efficient, solutions to the issues considered.

The main idea is disarmingly simple: we define two matrices, A and B. The
first one, matrix A, tells us the required factors. The second matrix, B, exhibits
the possible alternatives we have in the real world in order to implement our
wishes.

Then there is a third matrix, C, which is a function of A and B, which allows
us to compute optimal allocations out of our desiderata and out of the real–world
alternatives we have at our disposal. That computation is both simple and fast,
and may have heuristic components. The main ideas can be formulated for crisp
(not fuzzy) sets, but a more sensitive algorithm may be obtained with the help
of fuzzy objects.

Construction of matrix A

Suppose that we have several industries to distribute over a given geographic
space, and suppose that we have different potential placements for those in-
dustries. The first matrix describes the industries we are interested in, and
relates them to requirements for these industries (say, a shoe factory requires
a continuous leather supply, water, energy, some chemical inputs and pollution
control).

The first matrix, A, with k lines and m columns, has the following structure:

• Lines list the industries, p1, p2, . . . , pk.

• Columns list the requirements (factors) for these industries, f1, f2, . . . , fm.

• Given matrix A, its entries are linguistic variables Aij , say:

– Critical factor.

– Decisive factor.

– Indecisive factor.

– Irrelevant factor.
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Construction of matrix B

Matrix B has n lines and k columns and tells us what we have to offer to the
demands in matrix A.

Matrix B has the same structure as A but in a transposed way:

• Lines list the same requirements f1, f2, . . . , fn that appear in A. Matrix
B tells us what is available in our prospective placements.

• Columns list possible placements for our industries, z1, z2, . . . , zm, where
in general n 6= m.

• Again the entries Bjk of B are linguistic variables:

– Optimal availability.

– Good availability.

– Regular availability.

– Poor availability.

Construction of matrix C

Matrix C will be the tool we require to do actual computations. Its entries are
given by a heuristic procedure:

1. Suppose that there is demand for factor fi (1 value of demand), and that
region zj doesn’t have that factor (0 value of offer). We put Cik = 0.

2. Suppose that there is no demand for fi (0 value of demand), and yet that
region zj has that factor (value equal to 1). We put Cik = 1/n.

3. Suppose that there is no demand for fi (0 value of demand), and that
region zj doesn’t have that factor (value also equal to 0). We put Cik =
1/n!.

4. Finally suppose that there is a demand for fi (1 value of demand), and
that region zj has that factor (value equal to 1). We put Cik = 1.

These are simply “marks” or “grades” we give for the possible alternatives.
Cases 1. and 4. are obvious: they correspond to 0% and 100%, respectively. Case
2. gives an intermediate nonzero value because the fact that (momentarily) one
doesn’t require a factor that is available and which may be required in the
future must be taken into account. Finally Case 3 — no demand and absence
of a prescribed factor in the region — is given a nonzero value not to penalize
the possibility, as 0 should only be given to a factor that is required and isn’t
available.
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Ranking techniques

There are several alternative, empirically tests, ranking techniques, which de-
pend on the optimal goals to be attained. We describe here a simple ranking
scheme that has given very reliable results in actual optimizing situations:

• Consider the demand for industry j. Form the demand value Dj =∑
k Dkj . That is to say:

– Fix industry j. For site k, sum over all “grades” of the factors re-
quired for j. This gives the demand Dj of industry j.

• Examine the offer for site m: Om =
∑

i Oik. The offer is calculated as we
do for the demand.

• The rank grade rjm of site m with respect to industry j is given by:

rjm =
Om

Dj
.

Given matrices A, B,C, there are of course many other possibilities to rank
locations for industries with respect to the required factors. This is just the first
possibility.

We can also have global rankings:

• Compute the global demand, for all industries, D =
∑

j Dj .

• Compute the global offer, O =
∑

j Oj .

• The rank grade rm of site m with respect to all industries is: rm = Om/D.

Of course rm < 1 means that not all requirements are fulfilled, while rm ≤ 1
means the fulfilment of the requirements. One usually ranks the solutions with
respect to the global demand D (and not the Dj), which allows for a fast
algorithmic treatment of the procedure.

Comparison with an analytic solution

Given a fixed budget X, the distribution of F activities among Y locations, and
the calculation of an arrangement, if any, that satisfies the prescribed budget
is clearly NP–complete. For the obvious algorithm for the computation of an
adequate arrangement of activities and locations is exponential, while testing
whether some particular arrangement fits the budget can be done in polynomial
time on the length of the input data.

Let’s elaborate on that. In order to obtain one exact solution (if it exists)
for one such NP–complete allocation problem as described, one would need:

• Crisp values for resources and demand at each location.
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• We would have to consider all locations and the corresponding data; a
solution for the problem might involve e.g. raw material obtained at places
A1 and A2, plant location at A4, administrative tasks at A6, and so on.

So, we would have to consider all possibilities at all places, which together
with budget constraints makes the problem thus formulated into a NP–
complete one.

The coppe–cosenza procedure is a kind of cutting the Gordian knot solution.
It abandons crisp values for fuzzy data such as “critical” or “good.” The ranking
matrix sort of aggregates all data instead of considering each and one individual
possibility, and the final ranking procedure derives from that aggregate consid-
eration of all possible locations in a single demand index.

This semi–heuristical procedure however is known to provide efficient re-
sponses to most actual situations where it has been applied specifically because
it markedly improves over already existing unplanned situations. An example
is its application to the Brazilian Biodiesel Program [10, 11].

Anyway we believe that it is difficult or perhaps even impossible to analyti-
cally compare such a semi–heuristical procedure with a fully formal one.

7 Discussion

We take our cue from the last sentence in the preceding section. It has been
once asked by John Casti9: is incompleteness a red herring? Is undecidability
a red herring?

Not quite so. Undecidability is an everyday problem given our Turing–
based computers. “Bugs” are quite often the result of the unsolvability of the
Halting Problem. If we deal with a complex enough economic problem and try
to handle it with some computer program, undecidability will assuredly creep
up and disturb our work. Incompleteness is the way undecidability looks when
seen from inside a formal theory.

The same situation happens to NP hard and NP–complete problems.
We presented here in an intuitive vein a long argument that purports to

show that P = NP and P < NP are independent of strong axiomatic systems.
Yet we conclude our examples with an approximate algorithm that is known —
by practical testing — to perform quite well, and which has a fast, low degree
polynomial implementation. A brief summary of what we have out of these
situations is:

• If we deal with mathematical models for economic situations, we may have
to cope with undecidability, incompleteness and NP–completeness.

• If we confront a practical, everyday, particular situation which can be
usefully treated with a semi–heuristic procedure, then we will probably be
able to forget about undecidability, incompleteness and NP–completeness.

9In a private discussion with F. A. Doria in 1994.
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Of course there are crisp problems, say, cryptographic decoding procedures,
that will always require exact solutionf for a NP–complete problem. But if we
only need approximate solutions then an algorithm like the coppe–cosenza
procedure is enough.

Yet — think about the situation in physics. When Einstein first published his
general theory of relativity in 1916, nobody would even consider the possibility
that it would affect us in ordinary, everyday situations. Well, today our homely
GPS guiding devices use general relativity corrections to help is in establishing
our location.

This is a sobering remark. Follows that undecidability, incompleteness and
again NP–completeness may eventually matter, after all.
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