18 research outputs found

    Affine differential geometry analysis of human arm movements

    Get PDF
    Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the “two-thirds power law” which connects path curvature with velocity, and “local isochrony” which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan’s moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants—equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations for the role that the equi-affine metric may play in internal representations of motion perception and production

    A Sieve Auxiliary Function

    No full text
    . In the sieve theories of Rosser-Iwaniec and DiamondHalberstam -Richert, the upper and lower bound sieve functions (F and f , respectively) satisfy a coupled system of differential-difference equations with retarded arguments. To aid in the study of these functions, Iwaniec introduced a conjugate difference-differential equation with an advanced argument, and gave a solution, q, which is analytic in the right half-plane. The analysis of the bounding sieve functions, F and f , is facilitated by an adjoint integral inner-product relation which links the local behaviour of F \Gamma f with that of the sieve auxiliary function, q. In addition, q plays a fundamental role in determining the sieving limit of the combinatorial sieve, and hence in determining the boundary conditions of the sieve functions, F and f . The sieve auxiliary function, q, has been tabulated previously, but these data were not supported by numerical analysis, due to the prohibitive presence of high-order partial deriva..
    corecore