2,443 research outputs found

    Mental Fatigue Measurement Using EEG

    Get PDF

    Successful small bowel allotransplantation in dogs with cyclosporine and prednisone

    Get PDF
    Twelve dogs had transplantation of almost the entire small intestine in the orthotopic location; immunosuppression was with cyclosporine and prednisone. Half the dogs had survival of at least one month, and a third lived for at least four months. Two of the animals are still living after 550 and 555 days. Maintenance of nutrition, and absorption of D-xylose and fat were better than in control animals with an iatrogenic short gut syndrome, but distinctly worse than that of normal dogs. © 1984 by The Williams and Wilkins Co

    Total pancreaticoduodenal homotransplantation in dogs immunosuppressed with cyclosporine and steroids

    Get PDF
    Pancreaticoduodenal transplantation was performed with cyclosporine and steroid immunosuppressive therapy in 10 mongrel dogs that had pancreaticoduodenectomy. There was an average animal survival of 50.6 days and an average duration of normoglycemia of 41.8 days. We suggest that pancreaticoduodenal transplantation, which was abandoned as a clinical procedure 10 years ago, be reconsidered for clinical application. © 1984

    Detecting critical nodes for network vulnerability assessment under cascading failures

    Get PDF
    Recently, the major challenge in the robustness evaluation of networks is to enhance the detecting the most critical nodes. Many researchers have studied the problem of detecting the list of attacked nodes, which are the number of failed nodes is maximum, in order to protect these nodes. However, there is no any previous works to consider the cost of attacks that the budget is limited is very practical in the real attacks. In this paper, we study the problem of attacking nodes in networks to maximize the total profits of attacked nodes, where the total cost of attacks is remained under the budget. In addition, an algorithm is proposed to solve problem of attacking nodes in the network with limited budget while guaranteeing the high total profits of attacked nodes. Simulation results show that the proposed method provides good performance

    Site-directed in vitro immunization leads to a complete human monoclonal IgG4λ that binds specifically to the CDR2 region of CTLA-4 (CD152) without interfering the engagement of natural ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to acquire fully human monoclonal antibodies (mAbs) with pre-defined specificities is critical to the development of molecular tags for the analysis of receptor function in addition to promising immunotherapeutics. Yet most of the arriving affinity maturated and complete human immunoglobulin G (IgG) molecules, which are actually derived from single human B cells, have not widely been used to study the conserved self antigens (Ags) such as CD152 (cytotoxic T lymphocyte antigen-4, CTLA-4) because proper hosts are lacking.</p> <p>Results</p> <p>Here we developed an optimized protocol for site-directed <it>in vitro </it>immunizing peripheral blood mononuclear cells (PBMC) by using a selected epitope of human CD152, an essential receptor involved in down-regulation of T cell activation. The resultant stable trioma cell lines constantly produce anti-CD152 mAb (γ4λhuCD152), which contains variable (V) regions of the heavy chain and the light chain derived from the VH3 and Vλ human germline genes, respectively, and yet displays an unusual IgG4 isotype. Interestingly, γ4λhuCD152 has a basic pI not commonly found in myeloid monoclonal IgG4λs as revealed by the isoelectric focusing (IEF) analysis. Furthermore, γ4λhuCD152 binds specifically, with nanomolar affinity, to an extracellular constituency encompassing the putative second complementarity determining region (CDR2) of CD152, whereby it can react to activated CD3<sup>+ </sup>cells.</p> <p>Conclusion</p> <p>In a context of specific cell depletion and conditioned medium,<it>in vitro </it>induction of human Abs against a conserved self Ag was successfully acquired and a relatively basic mAb, γ4λhuCD152, with high affinity to CDR2 of CD152 was thus obtained. Application of such a human IgG4λ mAb with designated CDR2 specificity may impact upon and prefer for CD152 labeling both <it>in situ </it>and <it>ex situ</it>, as it does not affect the binding of endogenous B7 ligands and can localize into the confined immunological synapse which may otherwise prevent the access of whole IgG1 molecules.</p

    LC4SV: A Denoising Framework Learning to Compensate for Unseen Speaker Verification Models

    Full text link
    The performance of speaker verification (SV) models may drop dramatically in noisy environments. A speech enhancement (SE) module can be used as a front-end strategy. However, existing SE methods may fail to bring performance improvements to downstream SV systems due to artifacts in the predicted signals of SE models. To compensate for artifacts, we propose a generic denoising framework named LC4SV, which can serve as a pre-processor for various unknown downstream SV models. In LC4SV, we employ a learning-based interpolation agent to automatically generate the appropriate coefficients between the enhanced signal and its noisy input to improve SV performance in noisy environments. Our experimental results demonstrate that LC4SV consistently improves the performance of various unseen SV systems. To the best of our knowledge, this work is the first attempt to develop a learning-based interpolation scheme aiming at improving SV performance in noisy environments

    Photoluminescence from Bi5(GaCl4)3 molecular crystal

    Full text link
    Bi5(GaCl4)3 sample has been synthesized through the oxidation of Bi metal by gallium chloride (GaCl3) salt. Powder X-ray diffraction as well as micro-Raman scattering results revealed that, in addition to crystalline Bi5(GaCl4)3 in the product, amorphous phase containing [GaCl4]- and [Ga2Cl7]- units also exist. The thorough comparison of steady-state and time-resolved photoluminescent behaviors between Bi5(GaCl4)3 product and Bi5(AlCl4)3 crystal leads us to conclude that Bi53+ is the dominant emitter in the product, which gives rise to the ultrabroad emission ranging from 1 to 2.7 micrometer. Detailed quantum chemistry calculation helps us assign the observed excitations to some electronic transitions of Bi53+ polycation, especially at shorter wavelengths. It is believed that our work shown here not only is helpful to solve the confusions on the luminescent origin of bismuth in other material systems, but also serves to develop novel broadband tunable laser materials

    The Influence of Type 2 Diabetes and Glucose-Lowering Therapies on Cancer Risk in the Taiwanese

    Get PDF
    Objective. To investigate the association between type 2 diabetes, glucose-lowering therapies (monotherapy with either metformin, sulphonylurea or insulin) and cancer risk in Taiwan. Methods. Using Taiwan's National Health Research Institutes database of 1,000,000 random subjects from 2000–2008, we found 61777 patients with type 2 diabetes (age ≥20 years) and 677378 enrollees with no record of diabetes. Results. After adjusting for age and sex, we found patients with diabetes to have significantly higher risk of all cancers (OR: 1.176; 95% CI: 1.149–1.204, P < 0.001). Diabetic patients treated with insulin or sulfonylureas had significantly higher risk of all cancers, compared to those treated with metformin (OR: 1.583; 95% CI: 1.389–1.805, P < 0.001 and OR: 1.784; 95% CI: 1.406–2.262, P < 0.001). Metformin treatment was associated with a decreased risk of colon and liver cancer compared to sulphonylureas or insulin treatment. Sulfonylureas treatment was associated with an increased risk of breast and lung cancer compared to metformin therapy. Conclusions. Taiwanese with type 2 diabetes are at a high risk of breast, prostate, colon, lung, liver and pancreatic cancer. Those treated with insulin or sulfonylureas monotherapy are more likely to develop colon and liver cancer than those treated with metformin
    corecore