50 research outputs found

    A randomised control crossover trial of a theory based intervention to improve sun-safe and healthy behaviours in construction workers:Study protocol

    Get PDF
    Abstract Background Exposure to sunlight can have both positive and negative health impacts. Excessive exposure to ultra-violet (UV) radiation from the sun can cause skin cancer, however insufficient exposure to sunlight has a detrimental effect on production of Vitamin D. In the construction industry there are onsite proactive behaviours for safety, but sun-safety remains a low priority. There is limited research on understanding the barriers to adopting sun-safe behaviours and the association this may have with Vitamin D production. This paper reports a protocol for an intervention study, using text messaging in combination with a supportive smartphone App. The intervention aims to both reduce UV exposure during months with higher UV levels and promote appropriate dietary changes to boost Vitamin D levels during months with low UV levels. Method/design Approximately 60 construction workers will be recruited across the United Kingdom. A randomised control crossover trial (RCCT) will be used to test the intervention, with randomisation at site level – i.e. participants will receive both the control (no text messages or supportive App support) and intervention (daily text messages and supportive App). Using the Theory of Planned Behaviour (TPB) the intervention focuses on supporting sun-safety and healthy dietary decisions in relation to Vitamin D intake. The intervention emphasises cultivating the perception of normative support in the workplace, increasing awareness of control and self-efficacy in taking sun-protective behaviours, making healthier eating choices to boost Vitamin D, and tackling stigmas attached to image and group norms. Each study epoch will last 21 days with intervention text messages delivered on workdays only. The supportive App will provide supplementary information about sun protective behaviours and healthy dietary choices. The primary outcome measure is 25-hydroxy-Vitamin D [25(OH)D] level (obtained using blood spot sampling), which will be taken pre and post control and intervention periods. Secondary outcome measures are two-fold, (1) using the TPB to detect changes in behaviour, and (2) quantifying UV exposure during the UK peak radiation season (April–September) using body-mounted UV sensors. Discussion This study will provide important information about the effectiveness of a technology-based intervention to promote sun-safety and healthy behaviours in outdoor construction workers. Trial registration ISRCTN15888934 retrospectively registered 15.01.2018

    Factors associated with posttraumatic stress symptoms in a prospective cohort of patients after abdominal sepsis: a nomogram

    Get PDF
    Objective: To determine to what extent patients who have survived abdominal sepsis suffer from symptoms of posttraumatic stress disorder (PTSD) and depression, and to identify potential risk factors for PTSD symptoms. Design and setting: PTSD and depression symptoms were measured using the Impact of Events Scale-Revised (IES-R), the Post-Traumatic Symptom Scale 10 (PTSS-10) and the Beck Depression Inventory II (BDI-II). Patients and participants: A total of 135 peritonitis patients were eligible for this study, of whom 107 (80%) patients completed the questionnaire. The median APACHE-II score was 14 (range 12-16), and 89% were admitted to the ICU. Measurements and results: The proportion of patients with "moderate" PTSD symptom scores was 28% (95% CI 20-37), whilst 10% (95% CI 6-17) of patients had "high" PTSD symptom scores. Only 5% (95% CI 2-12) of the patients expressed severe depression symptoms. Factors associated with increased PTSD symptoms in a multivariate ordinal regression model were younger age (0.74 per 10 years older, p = 0.082), length of ICU stay (OR = 1.4 per doubling of duration, p = 0.003) and having some (OR = 4.9, p = 0.06) or many (OR = 55.5, p < 0.001) traumatic memories of the ICU or hospital stay. Conclusion: As many as 38% of patients after abdominal sepsis report elevated levels of PTSD symptoms on at least one of the questionnaires. Our nomogram may assist in identifying patients at increased risk for developing symptoms of PTSD

    A Cross-Species Analysis of MicroRNAs in the Developing Avian Face

    Get PDF
    Higher vertebrates use similar genetic tools to derive very different facial features. This diversity is believed to occur through temporal, spatial and species-specific changes in gene expression within cranial neural crest (NC) cells. These contribute to the facial skeleton and contain species-specific information that drives morphological variation. A few signaling molecules and transcription factors are known to play important roles in these processes, but little is known regarding the role of micro-RNAs (miRNAs). We have identified and compared all miRNAs expressed in cranial NC cells from three avian species (chicken, duck, and quail) before and after species-specific facial distinctions occur. We identified 170 differentially expressed miRNAs. These include thirty-five novel chicken orthologs of previously described miRNAs, and six avian-specific miRNAs. Five of these avian-specific miRNAs are conserved over 120 million years of avian evolution, from ratites to galliforms, and their predicted target mRNAs include many components of Wnt signaling. Previous work indicates that mRNA gene expression in NC cells is relatively static during stages when the beak acquires species-specific morphologies. However, miRNA expression is remarkably dynamic within this timeframe, suggesting that the timing of specific developmental transitions is altered in birds with different beak shapes. We evaluated one miRNA:mRNA target pair and found that the cell cycle regulator p27KIP1 is a likely target of miR-222 in frontonasal NC cells, and that the timing of this interaction correlates with the onset of phenotypic variation. Our comparative genomic approach is the first comprehensive analysis of miRNAs in the developing facial primordial, and in species-specific facial development

    A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms

    Get PDF
    A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science

    Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    Get PDF
    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
    corecore