79 research outputs found
Neural processing of criticism and positive comments from relatives in individuals with schizotypal personality traits
Objectives. High negative expressed emotion by family members towards schizophrenia patients increases the risk of subsequent relapse. The study aimed to determine whether individuals with high schizotypy (HS) and low schizotypy (LS) would differ in activation of brain areas involved in cognitive control when listening to relative criticism
Decoding Unattended Fearful Faces with Whole-Brain Correlations: An Approach to Identify Condition-Dependent Large-Scale Functional Connectivity
Processing of unattended threat-related stimuli, such as fearful faces, has been previously examined using group functional magnetic resonance (fMRI) approaches. However, the identification of features of brain activity containing sufficient information to decode, or “brain-read”, unattended (implicit) fear perception remains an active research goal. Here we test the hypothesis that patterns of large-scale functional connectivity (FC) decode the emotional expression of implicitly perceived faces within single individuals using training data from separate subjects. fMRI and a blocked design were used to acquire BOLD signals during implicit (task-unrelated) presentation of fearful and neutral faces. A pattern classifier (linear kernel Support Vector Machine, or SVM) with linear filter feature selection used pair-wise FC as features to predict the emotional expression of implicitly presented faces. We plotted classification accuracy vs. number of top N selected features and observed that significantly higher than chance accuracies (between 90–100%) were achieved with 15–40 features. During fearful face presentation, the most informative and positively modulated FC was between angular gyrus and hippocampus, while the greatest overall contributing region was the thalamus, with positively modulated connections to bilateral middle temporal gyrus and insula. Other FCs that predicted fear included superior-occipital and parietal regions, cerebellum and prefrontal cortex. By comparison, patterns of spatial activity (as opposed to interactivity) were relatively uninformative in decoding implicit fear. These findings indicate that whole-brain patterns of interactivity are a sensitive and informative signature of unattended fearful emotion processing. At the same time, we demonstrate and propose a sensitive and exploratory approach for the identification of large-scale, condition-dependent FC. In contrast to model-based, group approaches, the current approach does not discount the multivariate, joint responses of multiple functional connections and is not hampered by signal loss and the need for multiple comparisons correction
Valence-Specific Modulation in the Accumulation of Perceptual Evidence Prior to Visual Scene Recognition
Visual scene recognition is a dynamic process through which incoming sensory information is iteratively compared with predictions regarding the most likely identity of the input stimulus. In this study, we used a novel progressive unfolding task to characterize the accumulation of perceptual evidence prior to scene recognition, and its potential modulation by the emotional valence of these scenes. Our results show that emotional (pleasant and unpleasant) scenes led to slower accumulation of evidence compared to neutral scenes. In addition, when controlling for the potential contribution of non-emotional factors (i.e., familiarity and complexity of the pictures), our results confirm a reliable shift in the accumulation of evidence for pleasant relative to neutral and unpleasant scenes, suggesting a valence-specific effect. These findings indicate that proactive iterations between sensory processing and top-down predictions during scene recognition are reliably influenced by the rapidly extracted (positive) emotional valence of the visual stimuli. We interpret these findings in accordance with the notion of a genuine positivity offset during emotional scene recognition
Passive and Motivated Perception of Emotional Faces: Qualitative and Quantitative Changes in the Face Processing Network
Emotionally expressive faces are processed by a distributed network of interacting sub-cortical and cortical brain regions. The components of this network have been identified and described in large part by the stimulus properties to which they are sensitive, but as face processing research matures interest has broadened to also probe dynamic interactions between these regions and top-down influences such as task demand and context. While some research has tested the robustness of affective face processing by restricting available attentional resources, it is not known whether face network processing can be augmented by increased motivation to attend to affective face stimuli. Short videos of people expressing emotions were presented to healthy participants during functional magnetic resonance imaging. Motivation to attend to the videos was manipulated by providing an incentive for improved recall performance. During the motivated condition, there was greater coherence among nodes of the face processing network, more widespread correlation between signal intensity and performance, and selective signal increases in a task-relevant subset of face processing regions, including the posterior superior temporal sulcus and right amygdala. In addition, an unexpected task-related laterality effect was seen in the amygdala. These findings provide strong evidence that motivation augmentsco-activity among nodes of the face processing network and the impact of neural activity on performance. These within-subject effects highlight the necessity to consider motivation when interpreting neural function in special populations, and to further explore the effect of task demands on face processing in healthy brains
Processing of Body Odor Signals by the Human Brain
Brain development in mammals has been proposed to be promoted by successful adaptations to the social complexity as well as to the social and non-social chemical environment. Therefore, the communication via chemosensory signals might have been and might still be a phylogenetically ancient communication channel transmitting evolutionary significant information. In humans, the neuronal underpinnings of the processing of social chemosignals have been investigated in relation to kin recognition, mate choice, the reproductive state and emotional contagion. These studies reveal that human chemosignals are probably not processed within olfactory brain areas but through neuronal relays responsible for the processing of social information. It is concluded that the processing of human social chemosignals resembles the processing of social signals originating from other modalities, except that human social chemosignals are usually communicated without the allocation of attentional resources, that is below the threshold of consciousness. Deviances in the processing of human social chemosignals might be related to the development and maintenance of mental disorders
Deficient prefrontal attentional control in late-life generalized anxiety disorder: an fMRI investigation
Younger adults with anxiety disorders are known to show an attentional bias toward negative information. Little is known regarding the role of biased attention in anxious older adults, and even less is known about the neural substrates of any such bias. Functional magnetic resonance imaging (fMRI) was used to assess the mechanisms of attentional bias in late life by contrasting predictions of a top-down model emphasizing deficient prefrontal cortex (PFC) control and a bottom-up model emphasizing amygdalar hyperreactivity. In all, 16 older generalized anxiety disorder (GAD) patients (mean age=66 years) and 12 non-anxious controls (NACs; mean age=67 years) completed the emotional Stroop task to assess selective attention to negative words. Task-related fMRI data were concurrently acquired. Consistent with hypotheses, GAD participants were slower to identify the color of negative words relative to neutral, whereas NACs showed the opposite bias, responding more quickly to negative words. During negative words (in comparison with neutral), the NAC group showed PFC activations, coupled with deactivation of task-irrelevant emotional processing regions such as the amygdala and hippocampus. By contrast, GAD participants showed PFC decreases during negative words and no differences in amygdalar activity across word types. Across all participants, greater attentional bias toward negative words was correlated with decreased PFC recruitment. A significant positive correlation between attentional bias and amygdala activation was also present, but this relationship was mediated by PFC activity. These results are consistent with reduced prefrontal attentional control in late-life GAD. Strategies to enhance top-down attentional control may be particularly relevant in late-life GAD treatment
fMRI Evidence for a Dual Process Account of the Speed-Accuracy Tradeoff in Decision-Making
Background: The speed and accuracy of decision-making have a well-known trading relationship: hasty decisions are more prone to errors while careful, accurate judgments take more time. Despite the pervasiveness of this speed-accuracy tradeoff (SAT) in decision-making, its neural basis is still unknown. Methodology/Principal Findings: Using functional magnetic resonance imaging (fMRI) we show that emphasizing the speed of a perceptual decision at the expense of its accuracy lowers the amount of evidence-related activity in lateral prefrontal cortex. Moreover, this speed-accuracy difference in lateral prefrontal cortex activity correlates with the speedaccuracy difference in the decision criterion metric of signal detection theory. We also show that the same instructions increase baseline activity in a dorso-medial cortical area involved in the internal generation of actions. Conclusions/Significance: These findings suggest that the SAT is neurally implemented by modulating not only the amount of externally-derived sensory evidence used to make a decision, but also the internal urge to make a response. We propose that these processes combine to control the temporal dynamics of the speed-accuracy trade-off in decisionmaking
The role of the amygdala in face perception and evaluation
Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception
- …