76 research outputs found

    Environmental Attitudes and Behaviors among Secondary Students in Hong Kong

    Get PDF
    Although researchers have identified correlations between specific attitudes and particular behaviors in the pro-environmental domain, the general relationship between young people’s development of environmental knowledge, attitudes, and behaviors is not well understood. Past research indicates that geographic context can play a role, while social factors such as age and gender can have a more significant impact on predicting attitudes and behaviors than formal education. Few studies have systematically examined the relationships between education and environmental attitudes and behaviors among youth in Hong Kong. The purpose of this paper is to report the findings of a study comparing secondary school students’ environmental attitudes and behaviors with age and related factors in two international schools and two government schools in Hong Kong. Students’ attitudes and behaviors were compared based on school type (curriculum), while the authors additionally compared the significance of social factors and attitudes on students’ behaviors. Design/methodology/approach – Attitudes were measured using the New Ecological Paradigm (NEP) and the NEP for Children (NEPC), the most commonly used, internationally standardized tools for investigating environmental attitudes and values of adults and young people for comparative purposes. The authors compared NEP/NEPC scores and student self-reported environmental behaviors using a short questionnaire. Findings – No significant differences were found in attitudes or behaviors based on school type. However the authors did observe a significant effect of gender and age on students’ attitudes, and a significant correlation of student attitudes in the NEP with students’ self-reports regarding air conditioning consumption. Originality/value – This study builds a foundation for cross-national studies and for evaluating the impact of curricula over time.postprin

    Identification of a novel zinc metalloprotease through a global analysis of clostridium difficile extracellular proteins

    Get PDF
    Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis

    The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    Get PDF
    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are "magnetic bions" which carry net magnetic charge and induce a mass gap for gauge fluctuations. Another type are "neutral bions" which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics - which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Ecalle's resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.Comment: 112 pages, 7 figures; v2: typos corrected, discussion of supersymmetric models added at the end of section 8.1, reference adde

    Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    Get PDF
    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations

    Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically–relevant faecal environment, with implications for pathogenicity

    Get PDF
    Abstract Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility

    Semiquantitative Analysis of Clinical Heat Stress in Clostridium difficile Strain 630 Using a GeLC/MS Workflow with emPAI Quantitation.

    Get PDF
    <div><p><i>Clostridium difficile</i> is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 <i>C. difficile</i> proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.</p></div

    The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain

    Get PDF
    Clostridium difficile is a major cause of healthcare-associated infection and inflicts a considerable financial burden on healthcare systems worldwide. Disease symptoms range from self-limiting diarrhoea to fatal pseudomembranous colitis. Whilst C. difficile has two major virulence factors, toxin A and B, it is generally accepted that other virulence components of the bacterium contribute to disease. C. difficile colonises the gut of humans and animals and hence the processes of adherence and colonisation are essential for disease onset. Previously it has been suggested that flagella might be implicated in colonisation. Here we tested this hypothesis by comparing flagellated parental strains to strains in which flagella genes were inactivated using ClosTron technology. Our focus was on a UK-outbreak, PCR-ribotype 027 (B1/NAP1) strain, R20291. We compared the flagellated wild-type to a mutant with a paralyzed flagellum and also to mutants (fliC, fliD and flgE) that no longer produce flagella in vitro and in vivo. Our results with R20291 provide the first strong evidence that by disabling the motor of the flagellum, the structural components of the flagellum rather than active motility, is needed for adherence and colonisation of the intestinal epithelium during infection. Comparison to published data on 630Δerm and our own data on that strain revealed major differences between the strains: the R20291 flagellar mutants adhered less than the parental strain in vitro, whereas we saw the opposite in 630Δerm. We also showed that flagella and motility are not needed for successful colonisation in vivo using strain 630Δerm. Finally we demonstrated that in strain R20291, flagella do play a role in colonisation and adherence and that there are striking differences between C. difficile strains. The latter emphasises the overriding need to characterize more than just one strain before drawing general conclusions concerning specific mechanisms of pathogenesis

    Urban blues: birds change their tune in noisy cities

    No full text
    Session - 3C. Evolution and biodiversity in tropical Asi
    • …
    corecore