30 research outputs found

    Absence of Fas-L aggravates renal injury in acute Trypanosoma cruzi infection

    Get PDF
    Trypanosoma cruzi infection induces diverse alterations in immunocompetent cells and organs, myocarditis and congestive heart failure. However, the physiological network of disturbances imposed by the infection has not been addressed thoroughly. Regarding myocarditis induced by the infection, we observed in our previous work that Fas-L-/- mice (gld/gld) have very mild inflammatory infiltration when compared to BALB/c mice. However, all mice from both lineages die in the early acute phase. Therefore, in this work we studied the physiological connection relating arterial pressure, renal function/damage and cardiac insufficiency as causes of death. Our results show that a broader set of dysfunctions that could be classified as a cardio/anaemic/renal syndrome is more likely responsible for cardiac failure and death in both lineages. However, gld/gld mice had very early glomerular deposition of IgM and a more intense renal inflammatory response with reduced renal filtration, which is probably responsible for the premature death in the absence of significant myocarditis in gld/gld.Instituto Oswaldo Cruz-Fiocruz Laboratório de Biologia CelularUniversidade Federal do Rio de Janeiro Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal Fluminense Instituto Biomédico Departamento de Fisiologia e FarmacologiaUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Disciplina de NefrologiaCentro de Criação de Animais de Laboratório Departamento de Controle de Qualidade AnimalUNIFESP, EPM, Disciplina de NefrologiaSciEL

    Oral Administration of GW788388, an Inhibitor of Transforming Growth Factor Beta Signaling, Prevents Heart Fibrosis in Chagas Disease

    Get PDF
    Cardiac damage and dysfunction are prominent features in patients with chronic Chagas disease, which is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) and affects 10–12 million individuals in South and Central America. Our group previously reported that transforming growth factor beta (TGFß) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. In the present work, we evaluated the therapeutic action of an oral inhibitor of TGFß signaling (GW788388) administered during the acute phase of experimental Chagas disease. GW788388 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that GW788388 treatment was effective in protecting the cardiac conduction system, preserving gap junction plaque distribution and avoiding the development of cardiac fibrosis. Inhibition of TGFß signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic tool for acute and chronic Chagas disease that warrants further pre-clinical exploration. Administration of TGFß inhibitors during chronic infection in mouse models should be further evaluated, and future clinical trials should be envisaged

    A Phosphoproteomic Approach towards the Understanding of the Role of TGF-ÎČ in Trypanosoma cruzi Biology

    Get PDF
    Transforming growth factor beta (TGF-ÎČ) plays a pivotal role in Chagas disease, not only in the development of chagasic cardiomyopathy, but also in many stages of the T. cruzi life cycle and survival in the host cell environment. The intracellular signaling pathways utilized by T. cruzi to regulate these mechanisms remain unknown. To identify parasite proteins involved in the TGF-ÎČ response, we utilized a combined approach of two-dimensional gel electrophoresis (2DE) analysis and mass spectrometry (MS) protein identification. Signaling via TGF-ÎČ is dependent on events of phosphorylation, which is one of the most relevant and ubiquitous post-translational modifications for the regulation of gene expression, and especially in trypanosomatids, since they lack several transcriptional control mechanisms. Here we show a kinetic view of T. cruzi epimastigotes (Y strain) incubated with TGF-ÎČ for 1, 5, 30 and 60 minutes, which promoted a remodeling of the parasite phosphorylation network and protein expression pattern. The altered molecules are involved in a variety of cellular processes, such as proteolysis, metabolism, heat shock response, cytoskeleton arrangement, oxidative stress regulation, translation and signal transduction. A total of 75 protein spots were up- or down-regulated more than twofold after TGF-ÎČ treatment, and from these, 42 were identified by mass spectrometry, including cruzipain–the major T. cruzi papain-like cysteine proteinase that plays an important role in invasion and participates in the escape mechanisms used by the parasite to evade the host immune system. In our study, we observed that TGF-ÎČ addition favored epimastigote proliferation, corroborating 2DE data in which proteins previously described to be involved in this process were positively stimulated by TGF-ÎČ

    Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    Get PDF
    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite infections

    The surface charge of trypanosomatids

    Full text link

    Trypanosoma cruzi High Mobility Group B (TcHMGB) can act as an inflammatory mediator on mammalian cells

    Get PDF
    When an infection occurs, the innate immune cells recognize Pathogen Associated Molec ular Patterns (PAMPs) through their Pattern Recognition Receptors. This triggers an inflammatory response intended to kill the foreign microbe. But inflammation can also be triggered by the recognition of endogenous molecules called “Danger (or Damage) Asso ciated Molecular Patterns” (DAMPs) that are released by damaged or necrotic cells to “ring the alarm” of the immune system that repair is needed, so some of them are also known as “alarmins”. High Mobility group box 1 protein (HMGB1) is a prototypical alar min molecule released by injured cells and it is also actively secreted by cells of the innate immune system in response to invasion as well as to sterile damage. Trypanosoma cruzi, the causal agent of Chagas Disease, has its own HMGB protein that we called TcHMGB. Using in vitro and in vivo experimental systems, we demonstrated for the first time that TcHMGB is able to mediate inflammation on mammalian cells, inducing the expression of both pro-inflammatory and anti-inflammatory cytokines. Our results suggest that the parasiteÂŽs protein could have a role in the immune response and the pathogenesis of Cha gas disease, probably overlapping to some extent with the host cell DAMP moleculesÂŽ functions.Para citar este articulo: Cribb P, Perdomo V, Alonso VL, Manarin R, Barrios-PayaÂŽn J, Marquina-Castillo B, et al. (2017) Trypanosoma cruzi High Mobility Group B (TcHMGB) can act as an inflammatory mediator on mammalian cells. PLoS Negl Trop Dis 11(2): e0005350. doi:10.1371/journal.pntd.0005350Fil: Cribb, Pamela. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Cribb, Pamela. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas; Argentina.Fil: Perdomo, Virginia Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Perdomo, Virginia Gabriela. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas; Argentina.Fil: Alonso, Victoria LucĂ­a. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas; Argentina.Fil: Manarin, Romina. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas; Argentina.Fil: Barrios-PayĂĄn, Jorge. Instituto Nacional de Ciencias MĂ©dicas y NutriciĂłn Salvador ZubirĂĄn. SecciĂłn de PatologĂ­a Experimental; MĂ©xico.Fil: Marquina-Castillo, Brenda. Instituto Nacional de Ciencias MĂ©dicas y NutriciĂłn Salvador ZubirĂĄn. SecciĂłn de PatologĂ­a Experimental; MĂ©xico.Fil: Tavernelli, Luis. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: HernĂĄndez-Pando, Rogelio. Instituto Nacional de Ciencias MĂ©dicas y NutriciĂłn Salvador ZubirĂĄn. SecciĂłn de PatologĂ­a Experimental; MĂ©xico
    corecore