4,948 research outputs found
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Muscle fiber conduction velocity is more affected after eccentric than concentric exercise
It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis
Theory of Star Formation
We review current understanding of star formation, outlining an overall
theoretical framework and the observations that motivate it. A conception of
star formation has emerged in which turbulence plays a dual role, both creating
overdensities to initiate gravitational contraction or collapse, and countering
the effects of gravity in these overdense regions. The key dynamical processes
involved in star formation -- turbulence, magnetic fields, and self-gravity --
are highly nonlinear and multidimensional. Physical arguments are used to
identify and explain the features and scalings involved in star formation, and
results from numerical simulations are used to quantify these effects. We
divide star formation into large-scale and small-scale regimes and review each
in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and
their substructures. Important problems include how GMCs form and evolve, what
determines the star formation rate (SFR), and what determines the initial mass
function (IMF). Small scales range from dense cores to the protostellar systems
they beget. We discuss formation of both low- and high-mass stars, including
ongoing accretion. The development of winds and outflows is increasingly well
understood, as are the mechanisms governing angular momentum transport in
disks. Although outstanding questions remain, the framework is now in place to
build a comprehensive theory of star formation that will be tested by the next
generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission
statement adde
First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Nepal
BACKGROUND: Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. METHODS AND FINDINGS: We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42-4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43-5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. CONCLUSIONS: We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian reg
Nonlinear thermoelectric response of quantum dots: renormalized dual fermions out of equilibrium
The thermoelectric transport properties of nanostructured devices continue to
attract attention from theorists and experimentalist alike as the spatial
confinement allows for a controlled approach to transport properties of
correlated matter. Most of the existing work, however, focuses on
thermoelectric transport in the linear regime despite the fact that the
nonlinear conductance of correlated quantum dots has been studied in some
detail throughout the last decade. Here, we review our recent work on the
effect of particle-hole asymmetry on the nonlinear transport properties in the
vicinity of the strong coupling limit of Kondo-correlated quantum dots and
extend the underlying method, a renormalized superperturbation theory on the
Keldysh contour, to the thermal conductance in the nonlinear regime. We
determine the charge, energy, and heat current through the nanostructure and
study the nonlinear transport coefficients, the entropy production, and the
fate of the Wiedemann-Franz law in the non-thermal steady-state. Our approach
is based on a renormalized perturbation theory in terms of dual fermions around
the particle-hole symmetric strong-coupling limit.Comment: chapter contributed to 'New Materials for Thermoelectric
Applications: Theory and Experiment' Springer Series: NATO Science for Peace
and Security Series - B: Physics and Biophysics, Veljko Zlatic (Editor), Alex
Hewson (Editor). ISBN: 978-9400749863 (2012
Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.
Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance
Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation
A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active β-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear β-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach
Digital and circular technologies for climate-smart and sustainable agriculture: The case of Vietnamese coffee
\ua9 Published under licence by IOP Publishing Ltd.This comprehensive article addresses the pressing challenges confronting the global agriculture, primarily driven by climate change and resource constraints. With a focus on promoting climate-smart and sustainable agricultural practices, the study explores the transformative potential of emerging technologies, e.g., the innovative use of digital technologies like Internet of Things, Artificial Intelligence, and Blockchain, showcasing real-world examples of their benefits, and circular technologies, e.g., waste-to-value practices. The challenges of population growth, climate change, environmental impact, and the plight of smallholder farmers are elucidated. Climate-Smart Agriculture initiatives supported by the World Bank Group demonstrate practical efforts in addressing these challenges, aligning with sustainable development goals. Here, we introduce an innovative and smart agriculture (INNSA) platform for the creation and operation of sustainable coffee value chain in Vietnam as a case of study. Thought-provoking questions for future research conclude the review, encouraging interdisciplinary collaboration. In summary, this article provides a compelling case for adopting sustainable agricultural practices through digital and circular technologies, offering a roadmap for global agriculture\u27s transformation and resilience in the face of climate change
Involvement of Noradrenergic Neurotransmission in the Stress- but not Cocaine-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Role for β-2 Adrenergic Receptors
The responsiveness of central noradrenergic systems to stressors and cocaine poses norepinephrine as a potential common mechanism through which drug re-exposure and stressful stimuli promote relapse. This study investigated the role of noradrenergic systems in the reinstatement of extinguished cocaine-induced conditioned place preference by cocaine and stress in male C57BL/6 mice. Cocaine- (15 mg/kg, i.p.) induced conditioned place preference was extinguished by repeated exposure to the apparatus in the absence of drug and reestablished by a cocaine challenge (15 mg/kg), exposure to a stressor (6-min forced swim (FS); 20–25°C water), or administration of the α-2 adrenergic receptor (AR) antagonists yohimbine (2 mg/kg, i.p.) or BRL44408 (5, 10 mg/kg, i.p.). To investigate the role of ARs, mice were administered the nonselective β-AR antagonist, propranolol (5, 10 mg/kg, i.p.), the α-1 AR antagonist, prazosin (1, 2 mg/kg, i.p.), or the α-2 AR agonist, clonidine (0.03, 0.3 mg/kg, i.p.) before reinstatement testing. Clonidine, prazosin, and propranolol failed to block cocaine-induced reinstatement. The low (0.03 mg/kg) but not high (0.3 mg/kg) clonidine dose fully blocked FS-induced reinstatement but not reinstatement by yohimbine. Propranolol, but not prazosin, blocked reinstatement by both yohimbine and FS, suggesting the involvement of β-ARs. The β-2 AR antagonist ICI-118551 (1 mg/kg, i.p.), but not the β-1 AR antagonist betaxolol (10 mg/kg, i.p.), also blocked FS-induced reinstatement. These findings suggest that stress-induced reinstatement requires noradrenergic signaling through β-2 ARs and that cocaine-induced reinstatement does not require AR activation, even though stimulation of central noradrenergic neurotransmission is sufficient to reinstate
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
- …
