1,308 research outputs found

    Adoption of new health products in low and middle income settings: how product development partnerships can support country decision making

    Get PDF
    When a new health product becomes available, countries have a choice to adopt the product into their national health systems or to pursue an alternate strategy to address the public health problem. Here, we describe the role for product development partnerships (PDPs) in supporting this decision-making process. PDPs are focused on developing new products to respond to health problems prevalent in low and middle income settings. The impact of these products within public sector health systems can only be realized after a country policy process. PDPs may be the organizations most familiar with the evidence which assists decision making, and this generally translates into involvement in international policy development, but PDPs have limited reach into endemic countries. In a few individual countries, there may be more extensive involvement in tracking adoption activities and generating local evidence. This local PDP involvement begins with geographical prioritization based on disease burden, relationships established during clinical trials, PDP in-country resources, and other factors. Strategies adopted by PDPs to establish a presence in endemic countries vary from the opening of country offices to engagement of part-time consultants or with long-term or ad hoc committees. Once a PDP commits to support country decision making, the approaches vary, but include country consultations, regional meetings, formation of regional, product-specific committees, support of in-country advocates, development of decision-making frameworks, provision of technical assistance to aid therapeutic or diagnostic guideline revision, and conduct of stakeholder and Phase 4 studies. To reach large numbers of countries, the formation of partnerships, particularly with WHO, are essential. At this early stage, impact data are limited. But available evidence suggests PDPs can and do play an important catalytic role in their support of country decision making in a number of target countries

    Voltage-programmable liquid optical interface

    Get PDF
    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices

    Metabolic profile of children with extrahepatic portal vein obstruction undergoing meso-Rex bypass

    Get PDF
    Background: Extrahepatic portal vein obstruction (EHPVO) in children is often associated with growth restriction, which improves after the restoration of portal venous flow with a meso-Rex bypass, but the physiologic mechanism is unknown. The purpose of this study was to investigate the mechanism of growth delay in children with EHPVO by detailing the metabolic and nutritional profile before and after meso-Rex bypass. / Methods: Twenty consecutive children with EHPVO were prospectively studied before and 1 year after meso-Rex bypass. Caloric balance was determined by investigating caloric intake via a calorie count, total energy expenditure via a doubly labeled water isotope assay and stool caloric loss by bomb calorimetry. Laboratory markers of nutrition and growth hormone resistance were tested. / Results: Fifteen of the 20 children underwent successful meso-Rex bypass at a median age of 4.3 years. Prealbumin level was abnormally low (14.6 ± 3.0 mg/dL) at surgery but improved (17.0 ± 4.3 mg/dL) 1 year later (P = 0.026). Mean insulin-like growth factor 1 (IGF-1) level at baseline was 1.57 standard deviations below normal. IGF-1 levels increased from 88.3 ± 38.9 to 117.3 ± 54.5 ng/mL in the year after surgery (P = 0.047). Caloric intake divided by basal metabolic rate (1.90 ± 0.61), total energy expenditure (97.2 ± 15.0% of expected), and stool caloric losses (3.7 ± 1.8% of caloric intake) were all normal at baseline. / Conclusions: Children with EHPVO suffer from malnutrition and growth hormone resistance, which may explain their well-established finding of growth restriction. Prealbumin and IGF-1 levels improve after a successful meso-Rex bypass

    Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)

    Get PDF
    A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation

    Relationship of Adiposity and Insulin Resistance Mediated by Inflammation in a Group of Overweight and Obese Chilean Adolescents

    Get PDF
    The mild chronic inflammatory state associated with obesity may be an important link between adiposity and insulin resistance (IR). In a sample of 137 overweight and obese Chilean adolescents, we assessed associations between high-sensitivity C-reactive protein (hs-CRP), IR and adiposity; explored sex differences; and evaluated whether hs-CRP mediated the relationship between adiposity and IR. Positive relationships between hs-CRP, IR and 2 measures of adiposity were found. Hs-CRP was associated with waist circumference (WC) in boys and fat mass index (FMI) in girls. Using path analysis, we found that hs-CRP mediated the relationship between adiposity (WC and FMI) and the homeostatic model assessment of insulin resistance (HOMA-IR) (p < 0.05) in both sexes. Our novel finding is that inflammation statistically mediated the well described link between increased adiposity and IR

    Local Application of BMP-2 Specific Plasmids in Fibrin Glue does not Promote Implant Fixation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BMP-2 is known to accelerate fracture healing and might also enhance osseointegration and implant fixation. Application of recombinant BMP-2 has a time-limited effect. Therefore, a gene transfer approach with a steady production of BMP-2 appears to be attractive. The aim of this study was to examine the effect of locally applied BMP-2 plasmids on the bone-implant integration in a non-weight bearing rabbit tibia model using a comparatively new non-viral copolymer-protected gene vector (COPROG).</p> <p>Methods</p> <p>Sixty rabbits were divided into 4 groups. All of them received nailing of both tibiae. The verum group had the nails inserted with the COPROG vector and BMP-2 plasmids using fibrin glue as a carrier. Controls were a group with fibrin glue only and a blank group. After 28 and 56 days, these three groups were sacrificed and one tibia was randomly chosen for biomechanical testing, while the other tibia underwent histomorphometrical examination. In a fourth group, a reporter-gene was incorporated in the fibrin glue instead of the BMP-2 formula to prove that transfection was successful.</p> <p>Results</p> <p>Implant fixation strength was significantly lower after 28 and 56 days in the verum group. Histomorphometry supported the findings after 28 days, showing less bone-implant contact.</p> <p>In the fourth group, successful transfection could be confirmed by detection of the reporter-gene in 20 of 22 tibiae. But, also systemic reporter-gene expression was found in heterotopic locations, showing an undesired spreading of the locally applied gene formula.</p> <p>Conclusion</p> <p>Our results underline the transfecting capability of this vector and support the idea that BMP-2 might diminish osseointegration. Further studies are necessary to specify the exact mechanisms and the systemic effects.</p

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Immunomodulatory Effects of Streptococcus suis Capsule Type on Human Dendritic Cell Responses, Phagocytosis and Intracellular Survival

    Get PDF
    Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-α in human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/TNF-α cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in the body
    corecore