19 research outputs found

    Morphological development and cytochrome c oxidase activity in Streptomyces lividans are dependent on the action of a copper bound Sco protein

    Get PDF
    Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (Sco Sl ) and present a series of experiments that firmly establish a role for Sco Sl as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins. Under low copper concentrations, a Δ sco mutant in S. lividans displays two phenotypes; the development switch between vegetative mycelium and aerial hyphae stalls and cytochrome c oxidase (CcO) activity is significantly decreased. At elevated copper levels, the development and CcO activity in the Δ sco mutant are restored to wild-type levels and are thus independent of Sco Sl . A CcO knockout reveals that morphological development is independent of CcO activity leading us to suggest that Sco Sl has at least two targets in S. lividans . We establish that one Sco Sl target is the dinuclear Cu A domain of CcO and it is the cupric form of Sco Sl that is functionally active. The mechanism of cupric ion capture by Sco Sl has been investigated, and an important role for a conserved His residue is identified. </jats:p

    A role for antibiotic biosynthesis monooxygenase domain proteins in fidelity control during aromatic polyketide biosynthesis

    Get PDF
    We report the formicapyridines which are structurally and biosynthetically related to the pentacyclic fasamycin and formicamycin aromatic polyketides but comprise a rare pyridine moiety. These new compounds are trace level metabolites formed by derailment of the major biosynthetic pathway. Inspired by evolutionary logic we show that rational mutation of a single gene in the biosynthetic gene cluster leads to a significant increase both in total formicapyridine production and their enrichment relative to the fasamycins/formicamycins. Our observations broaden the polyketide biosynthetic landscape and identify a non-catalytic role for ABM superfamily proteins in type II polyketide synthase assemblages for maintaining biosynthetic pathway fidelity

    Novel Two-Component Systems Implied in Antibiotic Production in Streptomyces coelicolor

    Get PDF
    The abundance of two-component systems (TCSs) in Streptomyces coelicolor A3(2) genome indicates their importance in the physiology of this soil bacteria. Currently, several TCSs have been related to antibiotic regulation, and the purpose in this study was the characterization of five TCSs, selected by sequence homology with the well-known absA1A2 system, that could also be associated with this important process. Null mutants of the five TCSs were obtained and two mutants (ΔSCO1744/1745 and ΔSCO4596/4597/4598) showed significant differences in both antibiotic production and morphological differentiation, and have been renamed as abr (antibiotic regulator). No detectable changes in antibiotic production were found in the mutants in the systems that include the ORFs SCO3638/3639, SCO3640/3641 and SCO2165/2166 in any of the culture conditions assayed. The system SCO1744/1745 (AbrA1/A2) was involved in negative regulation of antibiotic production, and acted also as a negative regulator of the morphological differentiation. By contrast, the system SCO4596/4597/4598 (AbrC1/C2/C3), composed of two histidine kinases and one response regulator, had positive effects on both morphological development and antibiotic production. Microarray analyses of the ΔabrC1/C2/C3 and wild-type transcriptomes revealed downregulation of actII-ORF4 and cdaR genes, the actinorhodin and calcium-dependent antibiotic pathway-specific regulators respectively. These results demonstrated the involvement of these new two-component systems in antibiotic production and morphological differentiation by different approaches. One is a pleiotropic negative regulator: abrA1/A2. The other one is a positive regulator composed of three elements, two histidine kinases and one response regulator: abrC1/C2/C3

    Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization

    Get PDF
    Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2), S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene) PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145
    corecore