49 research outputs found

    TogoDoc Server/Client System: Smart Recommendation and Efficient Management of Life Science Literature

    Get PDF
    In this paper, we describe a server/client literature management system specialized for the life science domain, the TogoDoc system (Togo, pronounced Toe-Go, is a romanization of a Japanese word for integration). The server and the client program cooperate closely over the Internet to provide life scientists with an effective literature recommendation service and efficient literature management. The content-based and personalized literature recommendation helps researchers to isolate interesting papers from the ā€œtsunamiā€ of literature, in which, on average, more than one biomedical paper is added to MEDLINE every minute. Because researchers these days need to cover updates of much wider topics to generate hypotheses using massive datasets obtained from public databases or omics experiments, the importance of having an effective literature recommendation service is rising. The automatic recommendation is based on the content of personal literature libraries of electronic PDF papers. The client program automatically analyzes these files, which are sometimes deeply buried in storage disks of researchers' personal computers. Just saving PDF papers to the designated folders makes the client program automatically analyze and retrieve metadata, rename file names, synchronize the data to the server, and receive the recommendation lists of newly published papers, thus accomplishing effortless literature management. In addition, the tag suggestion and associative search functions are provided for easy classification of and access to past papers (researchers who read many papers sometimes only vaguely remember or completely forget what they read in the past). The TogoDoc system is available for both Windows and Mac OS X and is free. The TogoDoc Client software is available at http://tdc.cb.k.u-tokyo.ac.jp/, and the TogoDoc server is available at https://docman.dbcls.jp/pubmed_recom

    Workflow and Atlas System for Brain-Wide Mapping of Axonal Connectivity in Rat

    Get PDF
    Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve overviews of brain connectivity. To explore more efficient ways of mapping, analyzing, and sharing detailed axonal connectivity data from the rodent brain, we have implemented a workflow for data production and developed an atlas system tailored for online presentation of axonal tracing data. The system is available online through the Rodent Brain WorkBench (www.rbwb.org; Whole Brain Connectivity Atlas) and holds experimental metadata and high-resolution images of histological sections from experiments in which axonal tracers were injected in the primary somatosensory cortex. We here present the workflow and the data system, and exemplify how the online image repository can be used to map different aspects of the brain-wide connectivity of the rat primary somatosensory cortex, including not only presence of connections but also morphology, densities, and spatial organization. The accuracy of the approach is validated by comparing results generated with our system with findings reported in previous publications. The present study is a contribution to a systematic mapping of rodent brain connections and represents a starting point for further large-scale mapping efforts

    Characterizing a scientific elite: the social characteristics of the most highly cited scientists in environmental science and ecology

    Get PDF
    In science, a relatively small pool of researchers garners a disproportionally large number of citations. Still, very little is known about the social characteristics of highly cited scientists. This is unfortunate as these researchers wield a disproportional impact on their fields, and the study of highly cited scientists can enhance our understanding of the conditions which foster highly cited work, the systematic social inequalities which exist in science, and scientific careers more generally. This study provides information on this understudied subject by examining the social characteristics and opinions of the 0.1% most cited environmental scientists and ecologists. Overall, the social characteristics of these researchers tend to reflect broader patterns of inequality in the global scientific community. However, while the social characteristics of these researchers mirror those of other scientific elites in important ways, they differ in others, revealing findings which are both novel and surprising, perhaps indicating multiple pathways to becoming highly cited

    Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis

    Get PDF

    Where's the Passion?

    No full text
    With this issue of CB&T, we introduce the first in an occasional series of articles on topics that impact our work or shape our professional lives. Our aim is to provide a platform for points of view that are both insightful and thought provoking. Have a perspective you'd like to share or an issue you'd like to discuss? We're open to any relevant topic. Send your 500-word article for Insider's Insight to Kim Mitchell ([email protected]), publications director

    Gender Imbalance in U.S. Geoscience Academia

    Get PDF
    Geoscientists explain womenā€™s under-representation in our field along three dominant themes: the structure of academia, historically low numbers of women, and womenā€™s views and choices. Which factor they perceive as most important depends overwhelmingly on their gender

    On the Outside Looking In: Promoting HIV/AIDS Research Initiated by African American Investigators

    No full text
    People of color are disproportionately affected by HIV/AIDS, yet African American HIV/AIDS researchers are in short supply. Complex historical, structural, sociocultural, and personal barriers can prevent African Americans from becoming well-trained biomedical, behavioral, and social HIV/AIDS researchers
    corecore