42 research outputs found

    Regions identity between the genome of vertebrates and non-retroviral families of insect viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scope of our understanding of the evolutionary history between viruses and animals is limited. The fact that the recent availability of many complete insect virus genomes and vertebrate genomes as well as the ability to screen these sequences makes it possible to gain a new perspective insight into the evolutionary interaction between insect viruses and vertebrates. This study is to determine the possibility of existence of sequence identity between the genomes of insect viruses and vertebrates, attempt to explain this phenomenon in term of genetic mobile element, and try to investigate the evolutionary relationship between these short regions of identity among these species.</p> <p>Results</p> <p>Some of studied insect viruses contain variable numbers of short regions of sequence identity to the genomes of vertebrate with nucleotide sequence length from 28 bp to 124 bp. They are found to locate in multiple sites of the vertebrate genomes. The ontology of animal genes with identical regions involves in several processes including chromatin remodeling, regulation of apoptosis, signaling pathway, nerve system development and some enzyme-like catalysis. Phylogenetic analysis reveals that at least some short regions of sequence identity in the genomes of vertebrate are derived the ancestral of insect viruses.</p> <p>Conclusion</p> <p>Short regions of sequence identity were found in the vertebrates and insect viruses. These sequences played an important role not only in the long-term evolution of vertebrates, but also in promotion of insect virus. This typical win-win strategy may come from natural selection.</p

    Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics.

    Get PDF
    Calmodulin-based genetically encoded fluorescent calcium indicators (GCaMP-s) are powerful tools of imaging calcium dynamics from cells to freely moving animals. High affinity indicators with slow kinetics however distort the temporal profile of calcium transients. Here we report the development of reduced affinity ultrafast variants of GCaMP6s and GCaMP6f. We hypothesized that GCaMP-s have a common kinetic mechanism with a rate-limiting process in the interaction of the RS20 peptide and calcium-calmodulin. Therefore we targeted specific residues in the binding interface by rational design generating improved indicators with GCaMP6fu displaying fluorescence rise and decay times (t1/2) of 1 and 3 ms (37 °C) in vitro, 9 and 22-fold faster than GCaMP6f respectively. In HEK293T cells, GCaMP6fu revealed a 4-fold faster decay of ATP-evoked intracellular calcium transients than GCaMP6f. Stimulation of hippocampal CA1 pyramidal neurons with five action potentials fired at 100 Hz resulted in a single dendritic calcium transient with a 2-fold faster rise and 7-fold faster decay time (t1/2 of 40 ms) than GCaMP6f, indicating that tracking high frequency action potentials may be limited by calcium dynamics. We propose that the design strategy used for generating GCaMP6fu is applicable for the acceleration of the response kinetics of GCaMP-type calcium indicators

    Cholesky decomposition techniques in electronic structure theory

    No full text
    We review recently developed methods to efficiently utilize the Cholesky decomposition technique in electronic structure calculations. The review starts with a brief introduction to the basics of the Cholesky decomposition technique. Subsequently, examples of applications of the technique to ab inito procedures are presented. The technique is demonstrated to be a special type of a resolution-of-identity or density-fitting scheme. This is followed by explicit examples of the Cholesky techniques used in orbital localization, computation of the exchange contributionto the Fock matrix, in MP2, gradient calculations, and so-called method specific Cholesky decomposition. Subsequently, examples of calibration of the method with respect to computed total energies, excitation energies, and auxiliary basis set pruning are presented. In particular, it is demonstrated that the Cholesky method is an unbiased method to derive auxiliary basis sets. Furthermore, details of the implementational considerations are put forward and examples from a parallel Cholesky decomposition scheme is presented. Finally, an outlook and perspectives are presented, followed by a summary and conclusions section. We are of the opinion that the Cholesky decomposition method is a technique that has been overlooked for too long. We have just recently started to understand how to efficiently incorporate the method in existing ab initio programs. The full potential of the Cholesky technique has not yet been fully explored
    corecore