29,609 research outputs found

    Integrable Magnetic Model of Two Chains Coupled by Four-Body Interactions

    Full text link
    An exact solution for an XXZ chain with four-body interactions is obtained and its phase diagram is determined. The model can be reduced to two chains coupled by four-body interactions, and it is shown that the ground state of the two-chain model is magnetized in part. Furthermore, a twisted four-body correlation function of the anti-ferromagnetic Heisenberg chain is obtained.Comment: 7 pages, LaTeX, to be published in J. Phys. Soc. Jpn., rederived the mode

    On the standing wave mode of giant pulsations

    Get PDF
    Both odd-mode and even-mode standing wave structures have been proposed for giant pulsations. Unless a conclusion is drawn on the field-aligned mode structure, little progress can be made in understanding the excitation mechanism of giant pulsations. In order to determine the standing wave mode, we have made a systematic survey of magnetic field data from the AMPTE CCE spacecraft and from ground stations located near the geomagnetic foot point of CCE. We selected time intervals when CCE was close to the magnetic equator and also magnetically close to Syowa and stations in Iceland, and when either transverse or compressional Pc 4 waves were observed at CCE. Magnetograms from the ground stations were then examined to determine if there was a giant pulsation in a given time interval. One giant pulsation was associated with a compressional wave, while no giant pulsation was observed in association with transverse wave events. The CCE magnetic field record for the giant pulsation exhibited a remarkable similarity to a giant pulsation observed from the ATS 6 geostationary satellite near the magnetic equator (Hillebrand et al., 1982). In agreement with Hillebrand et al., we conclude that the compressional nature of the giant pulsation is due to an odd-mode standing wave structure. This conclusion places a strong constraint on the generation mechanism of giant pulsations. In particular, if giant pulsations are excited through the drift bounce resonance of ions with standing Alfvén waves, ω - mωd = ±Nωb, where ω is the wave frequency, m is the azimuthal wave number, ωd is the ion drift frequency,N is an integer, and ωb is the ion bounce frequency, then the resonance must occur at an even N

    Bosonic Helium droplets with cationic impurities: onset of electrostriction and snowball effects from quantum calculations

    Get PDF
    Variational MonteCarlo and Diffusion MonteCarlo calculations have been carried out for cations like Li+^+, Na+^+ and K+^+ as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modelled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab-initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are here discussed in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the clusters features

    Modified Spin Wave Analysis of Low Temperature Properties of Spin-1/2 Frustrated Ferromagnetic Ladder

    Full text link
    Low temperature properties of the spin-1/2 frustrated ladder with ferromagnetic rungs and legs, and two different antiferromagnetic next nearest neighbor interaction are investigated using the modified spin wave approximation in the region with ferromagnetic ground state. The temperature dependence of the magnetic susceptibility and magnetic structure factors is calculated. The results are consistent with the numerical exact diagonalization results in the intermediate temperature range. Below this temperature range, the finite size effect is significant in the numerical diagonalization results, while the modified spin wave approximation gives more reliable results. The low temperature properties near the limit of the stability of the ferromagnetic ground state are also discussed.Comment: 9 pages, 8 figure

    Mitochondrial haplogroups associated with elite Japanese athlete status

    Get PDF
    Purpose It has been hypothesised that certain mitochondrial haplogroups, which are defined by the presence of a characteristic cluster of tightly linked mitochondrial DNA polymorphisms, would be associated with elite Japanese athlete status. To examine this hypothesis, the frequencies of mitochondrial haplogroups found in elite Japanese athletes were compared with those in the general Japanese population. Methods Subjects comprised 139 Olympic athletes (79 endurance/middle-power athletes (EMA), 60 sprint/power athletes (SPA)) and 672 controls (CON). Two mitochondrial DNA fragments containing the hypervariable sequence I (m16024-m16383) of the major non-coding region and the polymorphic site at m. 5178C>A within the NADH dehydrogenase subunit 2 gene were sequenced, and subjects were classified into 12 major mitochondrial haplogroups (ie, F, B, A, N9a, N9b, M7a, M7b, M*, G2, G1, D5 or D4). The mitochondrial haplogroup frequency differences among EMA, SPA and CON were then examined. Results EMA showed an excess of haplogroup G1 (OR 2.52, 95% CI 1.05 to 6.02, p=0.032), with 8.9% compared with 3.7% in CON, whereas SPA displayed a greater proportion of haplogroup F (OR 2.79, 95% CI 1.28 to 6.07, p=0.007), with 15.0% compared with 6.0% in CON. Conclusions The results suggest that mitochondrial haplogroups G1 and F are associated with elite EMA and SPA status in Japanese athletes, respectivel

    Spin-Wave Theory of the Spiral Phase of the t-J Model

    Full text link
    A graded H.P,realization of the SU(2|1) algebra is proposed.A spin-wave theory with a condition that the sublattice magnetization is zero is discussed.The long-range spiral phase is investigated.The spin-spin correlator is calculated.Comment: 17 page
    • …
    corecore