117 research outputs found

    Effects of PPARγ Ligands on Leukemia

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RARs), members of the nuclear receptor superfamily, are transcription factors that regulate a variety of important cellular functions. PPARs form heterodimers retinoid X receptor (RXR), an obligate heterodimeric partner for other nuclear receptors. Several novel links between retinoid metabolism and PPAR responses have been identified, and activation of PPAR/RXR expression has been shown to increase response to retinoids. PPARγ has emerged as a key regulator of cell growth and survival, whose activity is modulated by a number of synthetic and natural ligands. While clinical trials in cancer patients with thiazolidinediones (TZD) have been disappointing, novel structurally different PPARγ ligands, including triterpenoids, have entered clinical arena as therapeutic agents for epithelial and hematopoietic malignancies. Here we shall review the antitumor advances of PPARγ, alone and in combination with RARα ligands in control of cell proliferation, differentiation, and apoptosis and their potential therapeutic applications in hematological malignancies

    Investigation of the individual genetic evolution of SARS-CoV-2 in a small cluster during the rapid spread of the BF.5 lineage in Tokyo, Japan

    Get PDF
    There has been a decreasing trend in new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases and fatalities worldwide. The virus has been evolving, indicating the potential emergence of new variants and uncertainties. These challenges necessitate continued efforts in disease control and mitigation strategies. We investigated a small cluster of SARS-CoV-2 Omicron variant infections containing a common set of genomic mutations, which provided a valuable model for investigating the transmission mechanism of genetic alterations. We conducted a study at a medical center in Japan during the Omicron surge (sub-lineage BA.5), sequencing the entire SARS-CoV-2 genomes from infected individuals and evaluating the phylogenetic tree and haplotype network among the variants. We compared the mutations present in each strain within the BA.5 strain, TKYnat2317, which was first identified in Tokyo, Japan. From June 29th to July 4th 2022, nine healthcare workers (HCWs) tested positive for SARS-CoV-2 by real-time PCR. During the same period, five patients also tested positive by real-time PCR. Whole genome sequencing revealed that the infected patients belonged to either the isolated BA.2 or BA.5 sub-lineage, while the healthcare worker infections were classified as BF.5. The phylogenetic tree and haplotype network clearly showed the specificity and similarity of the HCW cluster. We identified 12 common mutations in the cluster, including I110V in nonstructural protein 4 (nsp4), A1020S in the Spike protein, and H47Y in ORF7a, compared to the BA.5 reference. Additionally, one case had the extra nucleotide-deletion mutation I27* in ORF10, and low frequencies of genetic alterations were also found in certain instances. The results of genome sequencing showed that the nine HCWs shared a set of genetic mutations, indicating transmission within the cluster. Minor mutations observed in five HCW individuals suggested the emergence of new virus variants. Five amino acid substitutions occurred in nsp3, which could potentially affect virus replication or immune escape. Intra-host evolution also generated additional mutations. The cluster exhibited a mild disease course, with individuals in this case, recovering without requiring any medical treatments. Further investigation is needed to understand the relationship between the genetic evolution of the virus and the symptoms

    Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series

    Get PDF
    Dementia has an enormous impact on medical and financial resources in aging societies like Japan. Diagnosis of dementia can be made by physical and mental examinations, imaging tests, and findings of high abnormal proteins in cerebrospinal fluids. In addition, genetic tests can be performed in neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). In this case series, we presented three cases of dementia with unknown causes who carry novel variants in the genes associated with neurodegenerative diseases. Three patients (Patients 1, 2, and 6) were found by screening 18 dementia patients using a gene panel including 63 genes. The age of onset for Patient 1 was 74 years old, and his father had PD and mother had AD. The age of onset for Patient 2 was 75 years old, and her mother had AD. The age of onset for Patient 6 was 83 years old, and her father, two sisters, and daughter had dementia. The Mini-Mental State Examination produced results of 20, 15, and 22, respectively. The suspected diagnosis by neurological examinations and imaging studies for Patients 1 and 2 was AD, and for Patient 6 was FTD. Patient 1 was treated with donepezil; Patient 2 was treated with donepezil and memantine; and Patient 6 was treated with donepezil, galantamine, and rivastigmine. The three rare variants identified were: CLCN1, encoding a chloride channel, c.2848G>A:p.Glu950Lys (Patient 1); RYR2, encoding a calcium releasing ryanodine receptor, c.13175A>G:p.Lys4392Arg (Patient 2); and DCTN1, encoding a subunit of dynactin, c. 3209G>A:p.Arg1070Gln (Patient 6). The detected variants were interpreted according to the American College of Medical Genetics (ACMG) guidelines. The minor allele frequency for each variant was 0.025%, 0.023%, and 0.0004% in East Asians, respectively. The DCTN1 variant found in Patient 6 might be associated with FTD. Although none of them were previously reported in dementia patients, all variants were classified as variants of unknown significance (VUS). Our report suggests that results of genetic tests in elderly patients with dementia need to be carefully interpreted. Further data accumulation of genotype-phenotype relationships and development of appropriate functional models are warranted

    MEK blockade converts AML differentiating response to retinoids into extensive apoptosis

    Get PDF
    : The aberrant function of transcription factors and/or kinase-based signaling pathways that regulate the ability of hematopoietic cells to proliferate, differentiate, and escape apoptosis accounts for the leukemic transformation of myeloid progenitors. Here, we demonstrate that simultaneous retinoid receptor ligation and blockade of the MEK/ERK signaling module, using the small-molecule inhibitor CI-1040, result in a strikingly synergistic induction of apoptosis in both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells with constitutive ERK activation. This proapoptotic synergism requires functional RAR and RXR retinoid receptors, as demonstrated using RAR- and RXR-selective ligands and RAR-defective cells. In the presence of MEK inhibitors, however, retinoid-induced chromatin remodeling, target-gene transcription, and granulocytic differentiation are strikingly inhibited and apoptosis induction becomes independent of death-inducing ligand/receptor pairs; this suggests that apoptosis induction by combined retinoids and MEK inhibitors is entirely distinct from the classical "postmaturation" apoptosis induced by retinoids alone. Finally, we identify disruption of Bcl-2-dependent mitochondrial homeostasis as a possible point of convergence for the proapoptotic synergism observed with retinoids and MEK inhibitors. Taken together, these results indicate that combined retinoid treatment and MEK blockade exert powerful antileukemic effects and could be developed into a novel therapeutic strategy for both AML and APL

    Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19

    Get PDF
    Patients with coronavirus disease-2019 (COVID-19) have an increased risk of thrombosis and acute respiratory distress syndrome (ARDS). Thrombosis is often attributed to increases in plasminogen activator inhibitor-1 (PAI-1) and a shut-down of fibrinolysis (blood clot dissolution). Decreased urokinase-type plasminogen activator (uPA), a protease necessary for cell-associated plasmin generation, and increased tissue-type plasminogen activator (tPA) and PAI-1 levels have been reported in COVID-19 patients. Because these factors can occur in free and complexed forms with differences in their biological functions, we examined the predictive impact of uPA, tPA, and PAI-1 in their free forms and complexes as a biomarker for COVID-19 severity and the development of ARDS. In this retrospective study of 69 Japanese adults hospitalized with COVID-19 and 20 healthy donors, we found elevated free, non-complexed PAI-1 antigen, low circulating uPA, and uPA/PAI-1 but not tPA/PAI-1 complex levels to be associated with COVID-19 severity and ARDS development. This biomarker profile was typical for patients in the complicated phase. Lack of PAI-1 activity in circulation despite free, non-complexed PAI-1 protein and plasmin/α2anti-plasmin complex correlated with suPAR and sVCAM levels, markers indicating endothelial dysfunction. Furthermore, uPA/PAI-1 complex levels positively correlated with TNFα, a cytokine reported to trigger inflammatory cell death and tissue damage. Those levels also positively correlated with lymphopenia and the pro-inflammatory factors interleukin1β (IL1β), IL6, and C-reactive protein, markers associated with the anti-viral inflammatory response. These findings argue for using uPA and uPA/PAI-1 as novel biomarkers to detect patients at risk of developing severe COVID-19, including ARDS

    Comparison of the clinical performance and usefulness of five SARS-CoV-2 antibody tests

    Get PDF
    We examined the usefulness of five COVID-19 antibody detection tests using 114 serum samples at various time points from 34 Japanese COVID-19 patients. We examined Elecsys Anti-SARS-CoV-2 from Roche, and four immunochromatography tests from Hangzhou Laihe Biotech, Artron Laboratories, Chil, and Nadal. In the first week after onset, Elecsys had 40% positivity in Group S (severe cases) but was negative in Group M (mild-moderate cases). The immunochromatography kits showed 40–60% and 0–8% positivity in Groups S and M, respectively. In the second week, Elecsys showed 75% and 50% positivity, and the immunochromatography tests showed 5–80% and 50–75% positivity in Groups S and M, respectively. After the third week, Elecsys showed 100% positivity in both groups. The immunochromatography kits showed 100% positivity in Group S. In Group M, positivity decreased to 50% for Chil and 75–89% for Artron and Lyher. Elecsys and immunochromatography kits had 91–100% specificity. Elecsys had comparable chronological change of cut-off index values in the two groups from the second week to the sixth week. The current SARS-CoV-2 antibody detection tests do not provide meaningful interpretation of severity and infection status. Its use might be limited to short-term epidemiological studies

    COVID-19 severity and thrombo-inflammatory response linked to ethnicity

    Get PDF
    Although there is strong evidence that SARS-CoV-2 infection is associated with adverse outcomes in certain ethnic groups, the association of disease severity and risk factors such as comorbidities and biomarkers with racial disparities remains undefined. This retrospective study between March 2020 and February 2021 explores COVID-19 risk factors as predictors for patients’ disease progression through country comparison. Disease severity predictors in Germany and Japan were cardiovascular-associated comorbidities, dementia, and age. We adjusted age, sex, body mass index, and history of cardiovascular disease comorbidity in the country cohorts using a propensity score matching (PSM) technique to reduce the influence of differences in sample size and the surprisingly young, lean Japanese cohort. Analysis of the 170 PSM pairs confirmed that 65.29% of German and 85.29% of Japanese patients were in the uncomplicated phase. More German than Japanese patients were admitted in the complicated and critical phase. Ethnic differences were identified in patients without cardiovascular comorbidities. Japanese patients in the uncomplicated phase presented a suppressed inflammatory response and coagulopathy with hypocoagulation. In contrast, German patients exhibited a hyperactive inflammatory response and coagulopathy with hypercoagulation. These differences were less pronounced in patients in the complicated phase or with cardiovascular diseases. Coagulation/fibrinolysis-associated biomarkers rather than inflammatory-related biomarkers predicted disease severity in patients with cardiovascular comorbidities: platelet counts were associated with severe illness in German patients. In contrast, high D-dimer and fibrinogen levels predicted disease severity in Japanese patients. Our comparative study indicates that ethnicity influences COVID-19-associated biomarker expression linked to the inflammatory and coagulation (thrombo-inflammatory) response. Future studies will be necessary to determine whether these differences contributed to the less severe disease progression observed in Japanese COVID-19 patients compared with those in Germany

    Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coagulase-negative staphylococci (CoNS) are a major cause of nosocomial blood stream infection, especially in critically ill and haematology patients. CoNS are usually multidrug-resistant and glycopeptide antibiotics have been to date considered the drugs of choice for treatment. The aim of this study was to characterize CoNS with reduced susceptibility to glycopeptides causing blood stream infection (BSI) in critically ill and haematology patients at the University Hospital Tor Vergata, Rome, Italy, in 2007.</p> <p>Methods</p> <p>Hospital microbiology records for transplant haematology and ICU were reviewed to identify CoNS with elevated MICs for glycopeptides, and isolates were matched to clinical records to determine whether the isolates caused a BSI. The isolates were tested for susceptibility to new drugs daptomicin and tigecycline and the genetic relationship was assessed using f-AFLP.</p> <p>Results</p> <p>Of a total of 17,418 blood cultures, 1,609 were positive for CoNS and of these, 87 (5.4%) displayed reduced susceptibility to glycopeptides. Clinical review revealed that in 13 cases (7 in haematology and 6 in ICU), CoNS with reduced susceptibility to glycopeptides were responsible for a BSI. <it>Staphylococcus epidermidis </it>was the causative organism in 11 instances and <it>Staphylococcus haemolyticus </it>in 2. The incidence of oxacillin resistance was high (77%), although all isolates remained susceptible to linezolid, daptomycin and tigecycline. Fingerprinting of CoNS identified one clonal relationship between two isolates.</p> <p>Conclusion</p> <p>Multi-resistant CoNS with reduced susceptibility to glycopeptides, although still relatively infrequent in our hospital, are emerging pathogens of clinical concern. Surveillance by antibiotyping with attention to multi-resistant profile, and warning to clinicians, is necessary.</p
    corecore