1,705 research outputs found

    Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein

    Get PDF
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon

    Microfluidic impedance biosensors for monitoring a single and multiple cancer cells in anticancer drug treatments

    Get PDF
    In this work, we present a novel microfluidic impedance biosensor chip for trapping both a single and multiple cancer cells and monitoring their response to the anti-cancer drug treatment. By designing different sizes of working microelectrodes together with the V-shaped cell capture structures, a single or multiple cells are trapped on the microelectrodes surfaces. In addition, by utilizing the passive pumping method, cells can be trapped and positioned inside the microchannels without the need of using the outer micro pump or syringe. The impedance change induced by the response of cells to the anticancer drug Cisplatin treatment was successfully recorded. The proposed biosensor chip has a great potential for applications in cancer cell research, drug screening, and quantification of cancer cells from various tumor stages. The results of this study open potential research collaborations about development of cost-effective devices and lab-on-chips for early disease detection, studies of cancerous cells and their response to anti-cancer drugs to optimize cancer treatments, characterisation of mechanical properties of cells, new drug delivery mechanisms, and micro and nano manufacturing

    Determinants of postnatal spleen tissue regeneration and organogenesis

    Get PDF
    Abstract The spleen is an organ that filters the blood and is responsible for generating blood-borne immune responses. It is also an organ with a remarkable capacity to regenerate. Techniques for splenic auto-transplantation have emerged to take advantage of this characteristic and rebuild spleen tissue in individuals undergoing splenectomy. While this procedure has been performed for decades, the underlying mechanisms controlling spleen regeneration have remained elusive. Insights into secondary lymphoid organogenesis and the roles of stromal organiser cells and lymphotoxin signalling in lymph node development have helped reveal similar requirements for spleen regeneration. These factors are now considered in the regulation of embryonic and postnatal spleen formation, and in the establishment of mature white pulp and marginal zone compartments which are essential for spleen-mediated immunity. A greater understanding of the cellular and molecular mechanisms which control spleen development will assist in the design of more precise and efficient tissue grafting methods for spleen regeneration on demand. Regeneration of organs which harbour functional white pulp tissue will also offer novel opportunities for effective immunotherapy against cancer as well as infectious diseases

    Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct

    Get PDF
    A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on interconnectivity brain patterns

    Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    Get PDF
    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    The incidence of arthropathy adverse events in efalizumab-treated patients is low and similar to placebo and does not increase with long-term treatment: pooled analysis of data from Phase III clinical trials of efalizumab

    Get PDF
    A large-scale, pooled analysis of safety data from five Phase III clinical trials (including open-label extensions of two of these studies) and two Phase III open-label clinical trials of efalizumab was conducted to explore whether arthropathy adverse events (AEs) were associated with efalizumab treatment in patients with moderate-to-severe chronic plaque psoriasis. Data from patients who received subcutaneous injections of efalizumab or placebo were stratified for analysis into phases according to the nature and duration of treatment. These included: the ‘first treatment’ phase (0–12-week data from patients who received either efalizumab, 1 mg/kg once weekly, or placebo in the five placebo-controlled studies); the ‘extended treatment’ phase (13–24-week data from seven trials for all efalizumab-treated patients); and the ‘long-term treatment’ phase (data from efalizumab-treated patients who received treatment for up to 36 months in two long-term trials). Descriptive statistics were performed and the incidence of arthropathy AEs per patient-year was calculated using 95% confidence intervals (CIs). During the first treatment phase, a similar proportion of patients had an arthropathy AE in the efalizumab group (3.3%; 58/1740 patients) compared with the placebo group (3.5%; 34/979 patients); the incidence of arthropathy AEs per patient-year was 0.15 in the efalizumab group (95% CI 0.11–0.19) and 0.16 in the placebo group (95% CI 0.11–0.22). Analysis of first treatment phase data from one study (n = 793) showed that the incidence of psoriatic arthropathy per patient-year was lower in efalizumab-treated patients (0.10; 95% CI 0.05–0.18) than in those given placebo (0.17; 95% CI 0.08–0.30). During the extended treatment phase, the incidence of arthropathy remained low (0.17; 95% CI 0.14–0.22). Data from two long-term studies showed that there was no increase in the incidence of arthropathy AEs over time in patients treated with efalizumab for up to 36 months. Patients who had an arthropathy AE during treatment with efalizumab appeared to be more likely to have a history of arthropathy prior to treatment. Efalizumab does not appear to increase the risk of arthropathy AEs compared with placebo

    Digital Signal Processing

    Get PDF
    Contains summary of research and reports on sixteen research projects.U.S. Navy - Office of Naval Research (Contract N00014-75-C-0852)National Science Foundation FellowshipNATO FellowshipU.S. Navy - Office of Naval Research (Contract N00014-75-C-0951)National Science Foundation (Grant ECS79-15226)U.S. Navy - Office of Naval Research (Contract N00014-77-C-0257)Bell LaboratoriesNational Science Foundation (Grant ECS80-07102)Schlumberger-Doll Research Center FellowshipHertz Foundation FellowshipGovernment of Pakistan ScholarshipU.S. Navy - Office of Naval Research (Contract N00014-77-C-0196)U.S. Air Force (Contract F19628-81-C-0002)Hughes Aircraft Company Fellowshi

    Body Mass Index, percent body fat, and regional body fat distribution in relation to leptin concentrations in healthy, non-smoking postmenopausal women in a feeding study

    Get PDF
    BACKGROUND: The relationship between BMI and leptin has been studied extensively in the past, but previous reports in postmenopausal women have not been conducted under carefully controlled dietary conditions of weight maintenance using precise measures of body fat distribution. The aim of the present study was to examine the association between serum leptin concentration and adiposity as estimated by BMI and dual energy x-ray absorptiometry (DEXA) measures (percent body fat, central and peripheral fat, and lean mass) in postmenopausal women. METHODS: This study was conducted as a cross-sectional analysis within the control segment of a randomized, crossover trial in which postmenopausal women (n = 51) consumed 0 (control), 15 (one drink), and 30 (two drinks) g alcohol (ethanol)/d for 8 weeks as part of a controlled diet. BMIs were determined and DEXA scans were administered to the women during the 0 g alcohol treatment, and a blood sample was collected at baseline and week 8 of each study period for leptin analysis. RESULTS AND DISCUSSION: In multivariate analysis, women who were overweight (BMI > 25 to ≤ 30 kg/m(2)) had a 2-fold increase, and obese women (BMI > 30 kg/m(2)) had more than a 3-fold increase in serum leptin concentrations compared to normal weight (BMI ≤25 kg/m(2)) women. When the models for the different measures of adiposity were assessed by multiple R(2), models which included percent body fat explained the highest proportion (approximately 80%) of the serum leptin variance. CONCLUSION: Under carefully controlled dietary conditions, we confirm that higher levels of adiposity were associated with higher concentrations of serum leptin. It appears that percent body fat in postmenopausal women may be the best adiposity-related predictor of serum leptin

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore