57 research outputs found
Detection of human MCP-4/CCL13 isoforms by SELDI immunoaffinity capture
Monocyte Chemoattractant Proteins 4 (MCP-4/CCL13) is a member of a distinct, structurally-related subclass of CC chemokines mainly involved in recruitment of eosinphils to inflammatory sites. Recent evidence demonstrates that serum level of this protein strongly increases following high dose IL-2 immunotherapy. The physiological form of human MCP-4/CCL13 has yet to be purified. Therefore, the primary structure of the biologically relevant (mature) form has not been established. By using SELDI immunoaffinity capture technology we describe two mature isoforms both present in serum before and after high-dose IL-2 immunotherapy
Impaired RNA incorporation and dimerization in live attenuated leader-variants of SIV(mac239)
BACKGROUND: The 5' untranslated region (UTR) or leader sequence of simian immunodeficiency virus (SIV(mac239)) is multifunctional and harbors the regulatory elements for viral replication, persistence, gene translation, expression, and the packaging and dimerization of viral genomic RNA (vRNA). We have constructed a series of deletions in the SIV(mac239 )leader sequence in order to determine the involvement of this region in both the packaging and dimerization of viral genomic RNA. We also assessed the impact of these deletions upon viral infectiousness, replication kinetics and gene expression in cell lines and monkey peripheral blood mononuclear cells (PBMC). RESULTS: Regions on both sides of the major splice donor (SD) were found to be necessary for the efficiency and specificity of viral genome packaging. However, stem-loop1 is critical for both RNA encapsidation and dimerization. Downstream elements between the splice donor and the initiation site of SIV-Gag have additive effects on RNA packaging and contribute to a lesser degree to RNA dimerization. The targeted disruption of structures on both sides of the SD also severely impacts viral infectiousness, gene expression and replication in both CEMx174 cells and rhesus PBMC. CONCLUSION: In the leader region of SIV(mac239), stem-loop1 functions as the primary determinant for both RNA encapsidation and dimerization. Downstream elements between the splice donor and the translational initiation site of SIV-Gag are classified as secondary determinants and play a role in dimerization. Collectively, these data signify a linkage between the primary encapsidation determinant of SIV(mac239 )and RNA dimerization
Characterization of Novel Cutaneous Human Papillomavirus Genotypes HPV-150 and HPV-151
DNA from two novel HPV genotypes, HPV-150 and HPV-151, isolated from hair follicles of immuno-competent individuals, was fully cloned, sequenced and characterized. The complete genomes of HPV-150 and HPV-151 are 7,436-bp and 7,386-bp in length, respectively. Both contain genes for at least six proteins, namely E6, E7, E1, E2, L2, L1, as well as a non-coding upstream regulatory region located between the L1 and E6 genes: spanning 416-bp in HPV-150 (genomic positions 7,371 to 350) and 322-bp in HPV-151 (genomic positions 7,213 to 148). HPV-150 and HPV-151 are phylogenetically placed within the Betapapillomavirus genus and are most closely related to HPV-96 and HPV-22, respectively. As in other members of this genus, the intergenic E2-L2 region is very short and does not encode for an E5 gene. Both genotypes contain typical zinc binding domains in their E6 and E7 proteins, but HPV-151 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of the novel genotypes, quantitative type-specific real-time PCR assays were developed. The 95% detection limits of the HPV-150 and HPV-151 assays were 7.3 copies/reaction (range 5.6 to 11.4) and 3.4 copies/reaction (range 2.5 to 6.0), respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (total of 540 samples) revealed that HPV-150 and HPV-151 are relatively rare genotypes with a cutaneous tropism. Both genotypes were found in sporadic cases of common warts and SCC and BCC of the skin as single or multiple infections usually with low viral loads. HPV-150 can establish persistent infection of hair follicles in immuno-competent individuals. A partial L1 sequence of a putative novel HPV genotype, related to HPV-150, was identified in a squamous cell carcinoma of the skin obtained from a 64-year old immuno-compromised male patient
Structural Insights from Binding Poses of CCR2 and CCR5 with Clinically Important Antagonists: A Combined In Silico Study
Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å), we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2) and Glu283 (CCR5) are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design
Sustainable Urban Systems: Co-design and Framing for Transformation
Rapid urbanisation generates risks and opportunities for sustainable development. Urban policy and decision makers are challenged by the complexity of cities as social–ecological–technical systems. Consequently there is an increasing need for collaborative knowledge development that supports a whole-of-system view, and transformational change at multiple scales. Such holistic urban approaches are rare in practice. A co-design process involving researchers, practitioners and other stakeholders, has progressed such an approach in the Australian context, aiming to also contribute to international knowledge development and sharing. This process has generated three outputs: (1) a shared framework to support more systematic knowledge development and use, (2) identification of barriers that create a gap between stated urban goals and actual practice, and (3) identification of strategic focal areas to address this gap. Developing integrated strategies at broader urban scales is seen as the most pressing need. The knowledge framework adopts a systems perspective that incorporates the many urban trade-offs and synergies revealed by a systems view. Broader implications are drawn for policy and decision makers, for researchers and for a shared forward agenda
RNA interference approaches for treatment of HIV-1 infection
HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery
- …