28 research outputs found

    Protutumorska i antioksidativna svojstva terpinolena u moždanih stanica štakora

    Get PDF
    Terpinolene (TPO) is a natural monoterpene present in essential oils of many aromatic plant species. Although various biological activities of TPO have been demonstrated, its neurotoxicity has never been explored. In this in vitro study we investigated TPO’s antiproliferative and/or cytotoxic properties using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) test, genotoxic damage potential using the single-cell gel electrophoresis (SCGE), and oxidative effects through total antioxidant capacity (TAC) and total oxidative stress (TOS) in cultured primary rat neurons and N2a neuroblastoma cells. Dose-dependent effects of TPO (at 10 mg L-1, 25 mg L-1, 50 mg L-1, 100 mg L-1, 200 mg L-1, and 400 mg L-1) were tested in both cell types. Significant (P<0.05) decrease in cell proliferation were observed in cultured primary rat neurons starting with the dose of 100 mg L-1 and in N2a neuroblastoma cells starting with 50 mg L-1. TPO was not genotoxic in either cell type. In addition, TPO treatment at 10 mg L-1, 25 mg L-1, and 50 mg L-1 increased TAC in primary rat neurons, but not in N2a cells. However, at concentrations above 50 mg L-1 it increased TOS in both cell types. Our findings clearly demonstrate that TPO is a potent antiproliferative agent for brain tumour cells and may have potential as an anticancer agent, which needs to be further studied.Terpinolen (TPO) prirodni je monoterpen prisutan u esencijalnim uljima mnogih aromatskih biljaka. Premda su otprije poznate razne biološke aktivnosti TPO-a, dosad nije ispitana njegova neurotoksičnost. Svrha je ovog istraživanja in vitro bila utvrditi antiproliferacijska i/ili citotoksična svojstva TPO-a pomoću testa 3-(4,5-dimetiltiazol-2-yl)-2,5 difeniltetrazolijeva bromida (MTT), njegov genotoksični potencijal pomoću komet-testa te oksidativno djelovanje kroz ukupni antioksidativni kapacitet i ukupni oksidativni stres u uzgojenim primarnim neuronima štakora i N2a stanicama neuroblastoma. U objema staničnim linijama ispitani su učinci TPO-a u skladu sa sljedećim dozama: 10 mg L-1, 25 mg L-1, 50 mg L-1, 100 mg L-1, 200 mg L-1 i 400 mg L-1. Značajni (p<0.05) pad stanične proliferacije u primarnim neuronima štakora zamijećen je pri dozama od 100 mg L-1 naviše, a u N2a stanicama neuroblastoma pri dozama od 50 mg L-1 naviše. Niti u jednoj staničnoj liniji TPO se nije pokazao genotoksičnim. Usto se primjenom TPO-a pri dozama od 10 mg L-1, 25 mg L-1 i 50 mg L-1 povećao ukupni antioksidativni kapacitet primarnih štakorskih neurona, ali je takvo djelovanje izostalo u N2a stanica. Međutim, pri koncentracijama višim od 50 mg L-1 TPO je povećao ukupni oksidativni stres u objema staničnim linijama. Naši rezultati nedvojbeno pokazuju da je TPO snažan antiproliferacijski agens u tumorskih stanica mozga, a njegovu potencijalnu ulogu kao protutumorskog lijeka trebalo bi dalje istraživati

    Is there any relationship between decreased AgNOR protein synthesis and human hair loss?

    No full text
    Dogan, Hasan/0000-0002-5232-4336WOS: 000309939900002PubMed: 22747173Argyrophilic nucleolar organizing region associated proteins (AgNORs) play roles in cell proliferation and a variety of diseases. We attempted to determine whether decreased NOR protein synthesis causes human hair loss. We studied 21 healthy males who suffered hair loss on the frontal/vertex portion of the head. Hair root cells from normal and hair loss sites were stained for AgNOR. One hundred nuclei per site were evaluated and the AgNOR number and NORa/TNa proportions of individual cells were determined using a computer program. The cells from normal sites had significantly higher AgNOR counts than those from hair loss sites. Also, the cells from the normal sites had significantly higher NORa/TNa than cells from the hair loss sites. In the normal sites, the cells demonstrated more NOR protein synthesis than cells in hair loss sites. Therefore, decreased NOR protein synthesis appears to be related to hair loss in humans

    Comparison of fine needle aspiration biopsy and paraffin embedded tissue sections for measuring AgNOR proteins

    No full text
    WOS: 000361304600009PubMed: 25843622Paraffin embedded tissue sections and fine needle aspiration biopsy (FNAB) are important methods for diagnosis. We compared thyroid tissue obtained by FNAB to paraffin embedded sections to determine whether there were differences in detection of the amounts of argyrophilic nucleolar organizing region (AgNOR) proteins. Twenty-two patients with papillary thyroid carcinoma were included in the study. Slides were prepared with both FNAB tissue and 3 mu m sections of paraffin embedded tissue, and stained for AgNOR. One hundred nuclei per individual were evaluated; total AgNOR number/nucleus (TAn/TNn) and total AgNOR area/nuclear area (TAa/TNa) of individual cells were determined. Mean TAn/TNn and TAa/TNa values were 4.800 +/- 1.118 and 13.382 +/- 2.612, respectively, for FNAB samples; corresponding values were 2.406 +/- 0.649 and 8.49 +/- 0.893, respectively, for paraffin embedded sections. The differences between FNAB materials and paraffin embedded tissue sections were significant for the mean TAn/TNn and TAa/TNa values. Significant differences in the amounts of AgNOR protein detected were found between FNAB and paraffin embedded tissue sections
    corecore