349 research outputs found

    Deuteron Electroweak Disintegration

    Get PDF
    We study the deuteron electrodisintegration with inclusion of the neutral currents focusing on the helicity asymmetry of the exclusive cross section in coplanar geometry. We stress that a measurement of this asymmetry in the quasi elastic region is of interest for an experimental determination of the weak form factors of the nucleon, allowing one to obtain the parity violating electron neutron asymmetry. Numerically, we consider the reaction at low momentum transfer and discuss the sensitivity of the helicity asymmetry to the strangeness radius and magnetic moment. The problems coming from the finite angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail: [email protected] , [email protected]

    Parity violating target asymmetry in electron - proton scattering

    Get PDF
    We analyze the parity-violating (PV) components of the analyzing power in elastic electron-proton scattering and discuss their sensitivity to the strange quark contributions to the proton weak form factors. We point out that the component of the analyzing power along the momentum transfer is independent of the electric weak form factor and thus compares favorably with the PV beam asymmetry for a determination of the strangeness magnetic moment. We also show that the transverse component could be used for constraining the strangeness radius. Finally, we argue that a measurement of both components could give experimental information on the strangeness axial charge.Comment: 24 pages, Latex, 5 eps figures, submitted to Phys.Rev.

    Updated Analysis of a_1 and a_2 in Hadronic Two-body Decays of B Mesons

    Full text link
    Using the recent experimental data of B→D(∗)(π,ρ)B\to D^{(*)}(\pi,\rho), B→D(∗)Ds(∗)B\to D^{(*)} D_s^{(*)}, B→J/ψK(∗)B\to J/\psi K^{(*)} and various model calculations on form factors, we re-analyze the effective coefficients a_1 and a_2 and their ratio. QCD and electroweak penguin corrections to a_1 from B→D(∗)Ds(∗)B\to D^{(*)}D_s^{(*)} and a_2 from B→J/ψK(∗)B\to J/\psi K^{(*)} are estimated. In addition to the model-dependent determination, the effective coefficient a_1 is also extracted in a model-independent way as the decay modes B→D(∗)hB\to D^{(*)}h are related by factorization to the measured semileptonic distribution of B→D(∗)ℓΜˉB\to D^{(*)}\ell \bar\nu at q2=mh2q^2=m_h^2. Moreover, this enables us to extract model-independent heavy-to-heavy form factors, for example, F0BD(mπ2)=0.66±0.06±0.05F_0^{BD}(m_\pi^2)=0.66\pm0.06\pm0.05 and A0BD∗(mπ2)=0.56±0.03±0.04A_0^{BD^*}(m_\pi^2)=0.56\pm0.03\pm0.04. The determination of the magnitude of a_2 from B→J/ψK(∗)B\to J/\psi K^{(*)} depends on the form factors F1BKF_1^{BK}, A1,2BK∗A_{1,2}^{BK^*} and VBK∗V^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi}. By requiring that a_2 be process insensitive (i.e., the value of a_2 extracted from J/ψKJ/\psi K and J/ψK∗J/\psi K^* states should be similar), as implied by the factorization hypothesis, we find that B→K(∗)B\to K^{(*)} form factors are severely constrained; they respect the relation F1BK(mJ/ψ2)≈1.9A1BK∗(mJ/ψ2)F_1^{BK}(m^2_{J/\psi})\approx 1.9 A_1^{BK^*}(m^2_{J/\psi}). Form factors A2BK∗A_2^{BK^*} and VBK∗V^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi} inferred from the measurements of the longitudinal polarization fraction and the P-wave component in B→J/ψK∗B\to J/\psi K^* are obtained. A stringent upper limit on a_2 is derived from the current bound on \ov B^0\to D^0\pi^0 and it is sensitive to final-state interactions.Comment: 33 pages, 2 figures. Typos in Tables I and IX are corrected. To appear in Phys. Rev.

    The Physics of Cluster Mergers

    Get PDF
    Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. Some of the basic physical properties of mergers will be discussed, with an emphasis on simple analytic arguments rather than numerical simulations. Semi-analytic estimates of merger rates are reviewed, and a simple treatment of the kinematics of binary mergers is given. Mergers drive shocks into the intracluster medium, and these shocks heat the gas and should also accelerate nonthermal relativistic particles. X-ray observations of shocks can be used to determine the geometry and kinematics of the merger. Many clusters contain cooling flow cores; the hydrodynamical interactions of these cores with the hotter, less dense gas during mergers are discussed. As a result of particle acceleration in shocks, clusters of galaxies should contain very large populations of relativistic electrons and ions. Electrons with Lorentz factors gamma~300 (energies E = gamma m_e c^2 ~ 150 MeV) are expected to be particularly common. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these mergers are described.Comment: 38 pages with 9 embedded Postscript figures. To appear in Merging Processes in Clusters of Galaxies, edited by L. Feretti, I. M. Gioia, and G. Giovannini (Dordrecht: Kluwer), in press (2001

    Wave functions and decay constants of BB and DD mesons in the relativistic potential model

    Full text link
    With the decay constants of DD and DsD_s mesons measured in experiment recently, we revisit the study of the bound states of quark and antiquark in BB and DD mesons in the relativistic potential model. The relativistic bound state wave equation is solved numerically. The masses, decay constants and wave functions of BB and DD mesons are obtained. Both the masses and decay constants obtained here can be consistent with the experimental data. The wave functions can be used in the study of BB and DD meson decays.Comment: more discussion added, to appear in EPJ

    The transition form factors for semi-leptonic weak decays of J/ψJ/\psi in QCD sum rules

    Full text link
    Within the Standard Model, we investigate the semi-leptonic weak decays of J/ψJ/\psi. The various form factors of J/ψJ/\psi transiting to a single charmed meson (D(d,s)(∗)D^{(*)}_{(d,s)}) are studied in the framework of the QCD sum rules. These form factors fully determine the rates of the weak semi-leptonic decays of J/ψJ/\psi and provide valuable information about the non-perturbative QCD effects. Our results indicate that the decay rate of the semi-leptonic weak decay mode J/ψ→Ds(∗)−+e++ÎœeJ/\psi \to D^{(*)-}_{s}+e^{+}+\nu_{e} is at order of 10−1010^{-10}.Comment: 28 pages, 6 figures, revised version to be published in Eur.Phys.J.

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)−0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)−0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)−0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)−0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Minimal to no transfer of certolizumab pegol into breast milk: Results from CRADLE, a prospective, postmarketing, multicentre, pharmacokinetic study

    Get PDF
    Background Women with chronic inflammatory diseases face uncertainty regarding the safety of biologics during breast feeding. CRADLE was the first industry-sponsored study to evaluate certolizumab pegol (CZP) concentrations in human breast milk and estimate average daily infant dose (ADID) of maternal CZP. Methods CRADLE (NCT02154425) was a pharmacokinetic study of lactating mothers receiving CZP. After ≄3 CZP doses, breast milk samples were collected across one dosing period (14 days for 200 mg every 2 weeks [Q2W]; 28 days for 400 mg every 4 weeks [Q4W]). Optimal analytical methods were developed to determine CZP and polyethylene glycol (PEG) levels in breast milk. ADID and relative infant dose (RID) were estimated. Safety events in mothers and infants were assessed. Results 19 CZP-Treated mothers were screened; 17 entered the sampling period: 16 on 200 mg Q2W, 1 on 400 mg Q4W. 77/137 (56%) breast milk samples had no measurable CZP. For 4/17 mothers, all samples were below the lower limit of quantification (LLOQ). Estimated ADID was 0-0.0104 mg/kg/day; median RID: 0.15%. PEG was undetectable in 134/137 samples (results could not be determined in three samples). Infants of CZP-exposed mothers had a safety profile consistent with that of unexposed similar-Age infants. Conclusion When quantifiable, CZP concentrations were <3× LLOQ (<1% plasma concentration observed with therapeutic dose), indicating no/minimal CZP transfer from plasma to breast milk. RID was 0.15% of maternal dose; <10% is considered unlikely to be of clinical concern. No PEG transfer was observed. CZP absorption by infants via breast milk is unlikely due to its low oral bioavailability and Fc-Â-free molecular structure. These findings are reassuring and support continuation of CZP treatment during breast feeding. Trial registration number NCT02154425; Results

    Electroweak symmetry breaking in other terms

    Full text link
    We analyse descriptions of electroweak symmetry breaking in terms of ultralocal antisymmetric tensor fields and gauge-singlet geometric variables, respectively; in particular, the Weinberg--Salam model and, ultimately, dynamical electroweak symmetry breaking by technicolour theories with enhanced symmetry groups. Our motivation is to unveil the manifestly gauge invariant structure of the different realisations. We find, for example, parallels to different types of torsion.Comment: 15p

    Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with prognosis of estrogen receptor-negative breast cancer after chemotherapy

    Get PDF
    Introduction: Tumor lymphocyte infiltration is associated with clinical response to chemotherapy in estrogen receptor (ER) negative breast cancer. To identify variants in immunosuppressive pathway genes associated with prognosis after adjuvant chemotherapy for ER-negative patients, we studied stage I-III invasive breast cancer patients of European ancestry, including 9,334 ER-positive (3,151 treated with chemotherapy) and 2,334 ER-negative patients (1,499 treated with chemotherapy). Methods: We pooled data from sixteen studies from the Breast Cancer Association Consortium (BCAC), and employed two independent studies for replications. Overall 3,610 single nucleotide polymorphisms (SNPs) in 133 genes were genotyped as part of the Collaborative Oncological Gene-environment Study, in which phenotype and clinical data were collected and harmonized. Multivariable Cox proportional hazard regression was used to assess genetic associations with overall survival (OS) and breast
    • 

    corecore