9 research outputs found

    Finite element model of intermuscular pressure during isometric contraction of skeletal muscle

    No full text
    The measurement of in vivo intramuscular pressure (IMP) has recently become practical and IMP appears well correlated with muscle tension. A numerical model of skeletal muscle was developed to examine the mechanisms producing IMP. Unipennate muscle is modelled as a two-dimensional material continuum that is incompressible and nonlinearly anisotropic. The finite element technique is used to calculate IMP and muscle stress during passive stretch and during isometric contraction. A novel element models the contractile portion of muscle, incorporating sarcomere length-force and velocity-force relations. A range of unipennate muscle geometries can be modelled. The model was configured to simulate the rabbit tibialis anterior muscle over a range of lengths. Simulated IMP and stress results were validated against animal experimentation data. The simulation agreed well with the experimental data over the range of 0.8-1.1 of the optimal length. Severe pressure gradients were produced near the musculo-tendinous junctions while IMP was more uniform in the central muscle belly. IMP and muscle stress in relaxed (unstimulated) muscle increased nonlinearly with muscle length. IMP and stress in isometrically contracting muscle showed a local maximum at optimal length and were reduced at shorter lengths. At muscle lengths longer than optimal, stress and IMP increased predominately due to tension in the passive elastic structures

    Lateral trunk lean explains variation in dynamic knee joint load in patients with medial compartment knee osteoarthritis

    Get PDF
    SummaryObjectiveTo test the hypothesis that selected gait kinematics, particularly lateral trunk lean, observed in patients with medial compartment knee osteoarthritis explain variation in dynamic knee joint load.MethodIn this cross-sectional observational study, 120 patients with radiographically confirmed varus gonarthrosis underwent three-dimensional gait analysis at their typical walking speed. We used sequential (hierarchical) linear regression to examine the amount of variance in dynamic knee joint load (external knee adduction moment) explained by static lower limb alignment (mechanical axis angle) and gait kinematics determined a priori based on their proposed effect on knee load (walking speed, toe-out angle, and lateral trunk lean angle).ResultsApproximately 50% of the variation in the first peak external knee adduction moment was explained by mechanical axis angle (25%), Western Ontario and McMaster Universities Osteoarthritis Index pain score (1%), gait speed (1%), toe-out angle (12%), and lateral trunk lean angle (13%). There was no confounding or interaction with Kellgren and Lawrence grade of severity.ConclusionsGait kinematics, particularly lateral trunk lean, explain substantial variation in dynamic knee joint load in patients with medial compartment knee osteoarthritis. While largely ignored in previous gait studies, the effect of lateral trunk lean should be considered in future research evaluating risk factors and interventions for progression of knee osteoarthritis
    corecore