1,347 research outputs found
Hydrodynamic Limit of the Boltzmann Equation with Contact Discontinuities
The hydrodynamic limit for the Boltzmann equation is studied in the case when
the limit system, that is, the system of Euler equations contains contact
discontinuities. When suitable initial data is chosen to avoid the initial
layer, we prove that there exists a unique solution to the Boltzmann equation
globally in time for any given Knudsen number. And this family of solutions
converge to the local Maxwellian defined by the contact discontinuity of the
Euler equations uniformly away from the discontinuity as the Knudsen number
tends to zero. The proof is obtained by an appropriately chosen
scaling and the energy method through the micro-macro decomposition.Comment: 34 pages. submitte
CP violation in in the model III 2HDM
We have calculated the Wilson coefficients (i=1,2) in the
renormalization scheme in the model III 2HDM. Using the obtained
Wilson coefficients, we have analyzed the CP violation in decays (q=d,s) in the model. The CP asymmetry, , depends on the
parameters of models and in can be as large as 40% and
35% for and respectively. It can reach 4% for decays.
Because in SM CP violation is smaller than or equal to O() which is
unobservably small, an observation of CP asymmetry in the decays would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure
Chain Length Dependence of the Photovoltaic Properties of Monodisperse Donor-Acceptor Oligomers as Model Compounds of Polydisperse Low Band Gap Polymers
Well-defined conjugated oligomers (Sn) containing from 1 to 8 units of a tricyclic building block involving a dioctyloxybenzothiadiazole unit with two thienyl side rings (S1) are synthesized by a bottom-up approach. UV–Vis absorption data of solutions show that chain extension produces a narrowing of the HOMO–LUMO gap (ΔE) to values slightly smaller than that of the parent polymer (P1). Plots of ΔE and of the band gap of films (E g) versus the reciprocal chain length show that ΔE and E g converge towards a limit corresponding to an effective conjugation length (ECL) of 7–8 S1 units. UV–Vis absorption and photoluminescence data of solutions and solid films show that chain extension enhances the propensity to inter-chain aggregation. This conclusion is confirmed by GIXD analyses which reveal that the edge-on orientation of short-chain systems evolves toward a face-on orientation as chain length increases while the π-stacking distance decreases beyond 7 units. The results obtained on solution-processed BHJ solar cells show a progressive improvement of power conversion efficiency (PCE) with chain extension; however, the convergence limit of PCE remains inferior to that obtained with the polymer. These results are discussed with regard to the role of mono/polydispersity and chain aggregation
Stability of Transonic Shock Solutions for One-Dimensional Euler-Poisson Equations
In this paper, both structural and dynamical stabilities of steady transonic
shock solutions for one-dimensional Euler-Poission system are investigated.
First, a steady transonic shock solution with supersonic backgroumd charge is
shown to be structurally stable with respect to small perturbations of the
background charge, provided that the electric field is positive at the shock
location. Second, any steady transonic shock solution with the supersonic
background charge is proved to be dynamically and exponentially stable with
respect to small perturbation of the initial data, provided the electric field
is not too negative at the shock location. The proof of the first stability
result relies on a monotonicity argument for the shock position and the
downstream density, and a stability analysis for subsonic and supersonic
solutions. The dynamical stability of the steady transonic shock for the
Euler-Poisson equations can be transformed to the global well-posedness of a
free boundary problem for a quasilinear second order equation with nonlinear
boundary conditions. The analysis for the associated linearized problem plays
an essential role
Detailed balance condition and ultraviolet stability of scalar field in Horava-Lifshitz gravity
Detailed balance and projectability conditions are two main assumptions when
Horava recently formulated his theory of quantum gravity - the Horava-Lifshitz
(HL) theory. While the latter represents an important ingredient, the former
often believed needs to be abandoned, in order to obtain an ultraviolet stable
scalar field, among other things. In this paper, because of several attractive
features of this condition, we revisit it, and show that the scalar field can
be stabilized, if the detailed balance condition is allowed to be softly
broken. Although this is done explicitly in the non-relativistic general
covariant setup of Horava-Melby-Thompson with an arbitrary coupling constant
, generalized lately by da Silva, it is also true in other versions of
the HL theory. With the detailed balance condition softly breaking, the number
of independent coupling constants can be still significantly reduced. It is
remarkable to note that, unlike other setups, in this da Silva generalization,
there exists a master equation for the linear perturbations of the scalar field
in the flat Friedmann-Robertson-Walker background.Comment: Some typos are corrected. To appear in JCA
Rational design of a (S)-selective-transaminase for asymmetric synthesis of (1S)-1-(1,1′-biphenyl-2-yl)ethanamine
Amine transaminases offer an environmentally sustainable synthesis route for the production of pure chiral amines. However, their catalytic efficiency toward bulky ketone substrates is greatly limited by steric hindrance and therefore presents a great challenge for industrial synthetic applications. We hereby report an example of rational transaminase enzyme design to help alleviate these challenges. Starting from the Vibrio fluvialis amine transaminase that has no detectable catalytic activity toward the bulky aromatic ketone 2-acetylbiphenyl, we employed a rational design strategy combining in silico and in vitro studies to engineer the transaminase enzyme with a minimal number of mutations, achieving an high catalytic activity and high enantioselectivity. We found that, by introducing two mutations W57G/R415A, detectable enzyme activity was achieved. The rationally designed variant, W57F/R88H/V153S/K163F/I259M/R415A/V422A, showed an improvement in reaction rate by more than 1716-fold toward the bulky ketone under study, producing the corresponding enantiomeric pure (S)-amine (enantiomeric excess (ee) value of >99%)
Singlet Charge Quark hiding the Top: Tevatron and LEP Implications
If and quarks are strongly mixed with a weak singlet charge
quark, could be suppressed via the mode,
thereby the top quark could still hide below , whereas the heavy quark
signal observed at the Tevatron is due to the dominantly singlet quark .
This may occur without affecting the small value. Demanding GeV and m_t \ltap M_W, we find that cannot be too
suppressed. The heavy quark decays via , and bosons. The latter
can lead to -tagged jet events, while the strong -- mixing is
reflected in sizable fraction. decay occurs at tree
level and may be at the order, leading to the signature of , all isolated and with large , at order.Comment: 10 pages + 3 Figures (not included), ReVTeX, NTUTH-94-1
Raman light scattering study and microstructural analysis of epitaxial films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4}
We present a detailed temperature-dependent Raman light scattering study of
optical phonons in molecular-beam-epitaxy-grown films of the electron-doped
superconductor La_{2-x}Ce_{x}CuO_{4} close to optimal doping (x ~ 0.08, T_c =
29 K and x ~ 0.1, T_c = 27 K). The main focus of this work is a detailed
characterization and microstructural analysis of the films. Based on
micro-Raman spectroscopy in combination with x-ray diffraction,
energy-dispersive x-ray analysis, and scanning electron microscopy, some of the
observed phonon modes can be attributed to micron-sized inclusions of Cu_{2}O.
In the slightly underdoped film (x ~ 0.08), both the Cu_{2}O modes and others
that can be assigned to the La_{2-x}Ce_{x}CuO_{4} matrix show pronounced
softening and narrowing upon cooling below T ~ T_c. Based on control
measurements on commercial Cu_{2}O powders and on a comparison to prior Raman
scattering studies of other high-temperature superconductors, we speculate that
proximity effects at La_{2-x}Ce_{x}CuO_{4}/Cu_{2}O interfaces may be
responsible for these anomalies. Experiments on the slightly overdoped
La_{2-x}Ce_{x}CuO_{4} film (x ~ 0.1) did not reveal comparable phonon
anomalies.Comment: 7 pages, 8 figure
Differential roles of extracellular histidine residues of GPR68 for proton-sensing and allosteric modulation by divalent metal ions
GPR68, an orphan G-protein coupled receptor, senses protons, couples to multiple G-proteins, and is also activated or inhibited by divalent metal ions. It has seven extracellular histidine residues, although it is not clear how these histidine residues play a role in both proton-sensing and metal ion modulation. Here we demonstrate that divalent metal ions are allosteric modulators that can activate or inhibit proton activity in a concentration- and pH-dependent manner. We then show that single histidine mutants have differential and varying degrees of effects on proton-sensing and metal ion modulation. Some histidine residues play dual roles in proton-sensing and metal ion modulation, while others are important in one or the other but not both. Two extracellular disulfide bonds are predicted to constrain histidine residues to be spatially close to each other. Combining histidine mutations leads to reduced proton activity and resistance to metal ion modulation, while breaking the less conserved disulfide bond results in a more severe reduction in proton-sensing over metal modulation. The small-molecule positive allosteric modulators (PAMs) ogerin and lorazepam are not affected by these mutations and remain active at mutants with severely reduced proton activity or are resistant to metal ion modulation. These results suggest GPR68 possesses two independent allosteric modulation systems, one through interaction with divalent metal ions at the extracellular surface and another through small-molecule PAMs in the transmembrane domains. A new GPR68 model is developed to accommodate the findings which could serve as a template for further studies and ligand discovery by virtual ligand docking
- …