48 research outputs found

    Explicit formulas for GJMS-operators and QQ-curvatures

    Full text link
    We describe GJMS-operators as linear combinations of compositions of natural second-order differential operators. These are defined in terms of Poincar\'e-Einstein metrics and renormalized volume coefficients. As special cases, we find explicit formulas for conformally covariant third and fourth powers of the Laplacian. Moreover, we prove related formulas for all Branson's QQ-curvatures. The results settle and refine conjectural statements in earlier works. The proofs rest on the theory of residue families.Comment: 84 pages, revised argument in proof of Theorem 3.1, corrected typo

    Q-Curvature, Spectral Invariants, and Representation Theory

    No full text
    We give an introductory account of functional determinants of elliptic operators on manifolds and Polyakov-type formulas for their infinitesimal and finite conformal variations. We relate this to extremal problems and to the Q-curvature on even-dimensional conformal manifolds. The exposition is self-contained, in the sense of giving references sufficient to allow the reader to work through all details

    Metric connections in projective differential geometry

    Full text link
    We search for Riemannian metrics whose Levi-Civita connection belongs to a given projective class. Following Sinjukov and Mikes, we show that such metrics correspond precisely to suitably positive solutions of a certain projectively invariant finite-type linear system of partial differential equations. Prolonging this system, we may reformulate these equations as defining covariant constant sections of a certain vector bundle with connection. This vector bundle and its connection are derived from the Cartan connection of the underlying projective structure.Comment: 10 page

    Translation to Bundle Operators

    No full text
    We give explicit formulas for conformally invariant operators with leading term an m-th power of Laplacian on the product of spheres with the natural pseudo-Riemannian product metric for all m

    Positive mass theorem for the Paneitz-Branson operator

    Get PDF
    We prove that under suitable assumptions, the constant term in the Green function of the Paneitz-Branson operator on a compact Riemannian manifold (M,g)(M,g) is positive unless (M,g)(M,g) is conformally diffeomophic to the standard sphere. The proof is inspired by the positive mass theorem on spin manifolds by Ammann-Humbert.Comment: 7 page

    Boundary dynamics and multiple reflection expansion for Robin boundary conditions

    Get PDF
    In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a function S of the boundary fields: (\nabla_N +S)\phi =0. Information on quantum boundary dynamics is then encoded in the SS-dependent part of the effective action. In the present paper we extend the multiple reflection expansion method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective action (i) for constant S, (ii) to the order S^2 with an arbitrary number of tangential derivatives. Some applications to symmetry breaking effects, tachyon condensation and brane world are briefly discussed.Comment: latex, 22 pages, no figure

    Worldline approach to quantum field theories on flat manifolds with boundaries

    Get PDF
    We study a worldline approach to quantum field theories on flat manifolds with boundaries. We consider the concrete case of a scalar field propagating on R_+ x R^{D-1} which leads us to study the associated heat kernel through a one dimensional (worldline) path integral. To calculate the latter we map it onto an auxiliary path integral on the full R^D using an image charge. The main technical difficulty lies in the fact that a smooth potential on R_+ x R^{D-1} extends to a potential which generically fails to be smooth on R^D. This implies that standard perturbative methods fail and must be improved. We propose a method to deal with this situation. As a result we recover the known heat kernel coefficients on a flat manifold with geodesic boundary, and compute two additional ones, A_3 and A_{7/2}. The calculation becomes sensibly harder as the perturbative order increases, and we are able to identify the complete A_{7/2} with the help of a suitable toy model. Our findings show that the worldline approach is viable on manifolds with boundaries. Certainly, it would be desirable to improve our method of implementing the worldline approach to further simplify the perturbative calculations that arise in the presence of non-smooth potentials.Comment: 19 pages, 6 figures. Minor rephrasing of a few sentences, references added. Version accepted by JHE

    Spectral action for torsion with and without boundaries

    Full text link
    We derive a commutative spectral triple and study the spectral action for a rather general geometric setting which includes the (skew-symmetric) torsion and the chiral bag conditions on the boundary. The spectral action splits into bulk and boundary parts. In the bulk, we clarify certain issues of the previous calculations, show that many terms in fact cancel out, and demonstrate that this cancellation is a result of the chiral symmetry of spectral action. On the boundary, we calculate several leading terms in the expansion of spectral action in four dimensions for vanishing chiral parameter θ\theta of the boundary conditions, and show that θ=0\theta=0 is a critical point of the action in any dimension and at all orders of the expansion.Comment: 16 pages, references adde

    Zeta function determinant of the Laplace operator on the DD-dimensional ball

    Get PDF
    We present a direct approach for the calculation of functional determinants of the Laplace operator on balls. Dirichlet and Robin boundary conditions are considered. Using this approach, formulas for any value of the dimension, DD, of the ball, can be obtained quite easily. Explicit results are presented here for dimensions D=2,3,4,5D=2,3,4,5 and 66.Comment: 22 pages, one figure appended as uuencoded postscript fil

    Twistor geometry of a pair of second order ODEs

    Full text link
    We discuss the twistor correspondence between path geometries in three dimensions with vanishing Wilczynski invariants and anti-self-dual conformal structures of signature (2,2)(2, 2). We show how to reconstruct a system of ODEs with vanishing invariants for a given conformal structure, highlighting the Ricci-flat case in particular. Using this framework, we give a new derivation of the Wilczynski invariants for a system of ODEs whose solution space is endowed with a conformal structure. We explain how to reconstruct the conformal structure directly from the integral curves, and present new examples of systems of ODEs with point symmetry algebra of dimension four and greater which give rise to anti--self--dual structures with conformal symmetry algebra of the same dimension. Some of these examples are (2,2)(2, 2) analogues of plane wave space--times in General Relativity. Finally we discuss a variational principle for twistor curves arising from the Finsler structures with scalar flag curvature.Comment: Final version to appear in the Communications in Mathematical Physics. The procedure of recovering a system of torsion-fee ODEs from the heavenly equation has been clarified. The proof of Prop 7.1 has been expanded. Dedicated to Mike Eastwood on the occasion of his 60th birthda
    corecore