We search for Riemannian metrics whose Levi-Civita connection belongs to a
given projective class. Following Sinjukov and Mikes, we show that such metrics
correspond precisely to suitably positive solutions of a certain projectively
invariant finite-type linear system of partial differential equations.
Prolonging this system, we may reformulate these equations as defining
covariant constant sections of a certain vector bundle with connection. This
vector bundle and its connection are derived from the Cartan connection of the
underlying projective structure.Comment: 10 page