41 research outputs found

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Measurement of the Proton Structure Function F ⁣2(x,Q2)F_{\!2}(x,Q^2)

    Full text link
    A measurement of the proton structure function F ⁣2(x,Q2)F_{\!2}(x,Q^2) is reported for momentum transfer squared Q2Q^2 between 4.5 GeV2GeV^2 and 1600 GeV2GeV^2 and for Bjorken xx between 1.8⋅10−41.8\cdot10^{-4} and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that F ⁣2F_{\!2} increases significantly with decreasing xx, confirming our previous measurement made with one tenth of the data available in this analysis. The Q2Q^2 dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to F ⁣2F_{\!2}.Comment: 32 pages, ps, appended as compressed, uuencoded fil

    The 'mitoflash' probe cpYFP does not respond to superoxide

    Get PDF
    Ageing and lifespan of organisms are determined by complicated interactions between their genetics and the environment, but the cellular mechanisms remain controversial; several studies suggest that cellular energy metabolism and free radical dynamics affect lifespan, implicating mitochondrial function. Recently, Shen et al.1 provided apparent mechanistic insight by reporting that mitochondrial oscillations of ‘free radical production’, called ‘mitoflashes’, in the pharynx of three-day old Caenorhabditis elegans correlated inversely with lifespan. The interpretation of mitoflashes as ‘bursts of superoxide radicals’ assumes that circularly permuted yellow fluorescent protein (cpYFP) is a reliable indicator of mitochondrial superoxide2, but this interpretation has been criticized because experiments and theoretical considerations both show that changes in cpYFP fluorescence are due to alterations in pH, not superoxide3, 4, 5, 6, 7. Here we show that purified cpYFP is completely unresponsive to superoxide, and that mitoflashes do not reflect superoxide generation or provide a link between mitochondrial free radical dynamics and lifespan
    corecore