17 research outputs found

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Earth as a Tool for Astrobiology—A European Perspective

    Get PDF

    Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California

    Get PDF
    A partially serpentinized peridotite from the Josephine ophiolite has been studied in detail in order to characterize the chemical processes of its serpentinization. The original rock was harzburgite, and its olivine and orthopyroxene are partially replaced by veins and patches of lizardite serpentine and magnetite; brucite and talc are completely absent from the serpentinite, regardless of whether the precursor mineral was olivine or pyroxene. Petrographic and mineral-chemical data suggest at least two phases of serpentinization. Incipient serpentinization produced lizardite and magnetite veinlets, from preferential dissolution of orthopyroxene, and/or infiltration of a silica-rich fluid. No talc or brucite was produced, which suggests this serpentinization happened in a chemically open system. Later serpentinization was from a fluid closer to Fe-Mg-Si chemical equilibrium with the harzburgite, which should in theory favor formation of a brucite-bearing serpentinite. Brucite is absent from late serpentine veins, but they have some porosity which could represent former brucite that was dissolved out or was reacted out after serpentinization. Isocon modeling suggests that Si, Fe, and K were added during serpentinization and that Ca was lost; i.e., the serpentinization was not isochemical (except for H2O). Results of petrographic observations, thermodynamic modeling, and mass balance calculations were used to constrain the reactions for global serpentinization of the studied sample. These reactions indicate that water with a concentration of H2 up to two times that of deep sea vent fluids may have been produced during the serpentinization of the Josephine peridotite, which could then have been a potential host for significant biomass

    Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere

    No full text
    Pre-photosynthetic niches were meagre with a productivity of much less than 10−4 of modern photosynthesis. Serpentinization, arc volcanism and ridge-axis volcanism reliably provided H2. Methanogens and acetogens reacted CO2 with H2 to obtain energy and make organic matter. These skills pre-adapted a bacterium for anoxygenic photosynthesis, probably starting with H2 in lieu of an oxygen ‘acceptor’. Use of ferrous iron and sulphide followed as abundant oxygen acceptors, allowing productivity to approach modern levels. The ‘photobacterium’ proliferated rooting much of the bacterial tree. Land photosynthetic microbes faced a dearth of oxygen acceptors and nutrients. A consortium of photosynthetic and soil bacteria aided weathering and access to ferrous iron. Biologically enhanced weathering led to the formation of shales and, ultimately, to granitic rocks. Already oxidized iron-poor sedimentary rocks and low-iron granites provided scant oxygen acceptors, as did freshwater in their drainages. Cyanobacteria evolved dioxygen production that relieved them of these vicissitudes. They did not immediately dominate the planet. Eventually, anoxygenic and oxygenic photosynthesis oxidized much of the Earth's crust and supplied sulphate to the ocean. Anoxygenic photosynthesis remained important until there was enough O2 in downwelling seawater to quantitatively oxidize massive sulphides at mid-ocean ridge axes

    The Sample Analysis at Mars Investigation and Instrument Suite

    Get PDF
    International audienceThe Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm

    Outgassing History and Escape of the Martian Atmosphere and Water Inventory

    No full text
    The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ∼500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ∼4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure
    corecore