48 research outputs found

    Transiting Exoplanets with JWST

    Full text link
    The era of exoplanet characterization is upon us. For a subset of exoplanets -- the transiting planets -- physical properties can be measured, including mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres of a further subset of transiting planets, the hot Jupiters, is now routine with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will continue Spitzer's legacy with its large mirror size and precise thermal stability. JWST is poised for the significant achievement of identifying habitable planets around bright M through G stars--rocky planets lacking extensive gas envelopes, with water vapor and signs of chemical disequilibrium in their atmospheres. Favorable transiting planet systems, are, however, anticipated to be rare and their atmosphere observations will require tens to hundreds of hours of JWST time per planet. We review what is known about the physical characteristics of transiting planets, summarize lessons learned from Spitzer high-contrast exoplanet measurements, and give several examples of potential JWST observations.Comment: 22 pages, 11 figures. In press in "Astrophysics in the Next Decade: JWST and Concurrent Facilities, Astrophysics & Space Science Library, Thronson, H. A., Tielens, A., Stiavelli, M., eds., Springer: Dordrecht (2008)." The original publication will be available at http://www.springerlink.co

    RAN translation of C9orf72-related dipeptide repeat proteins in zebrafish recapitulates hallmarks of amyotrophic lateral sclerosis and identifies hypothermia as a therapeutic strategy

    Get PDF
    Objective Hexanucleotide repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A large body of evidence implicates dipeptide repeats (DPRs) proteins as one of the main drivers of neuronal injury in cell and animal models. Methods A pure repeat-associated non-AUG (RAN) translation zebrafish model of C9orf72-ALS/FTD was generated. Embryonic and adult transgenic zebrafish lysates were investigated for the presence of RAN-translated DPR species and adult-onset motor deficits. Using C9orf72 cell models as well as embryonic C9orf72-ALS/FTD zebrafish, hypothermic-therapeutic temperature management (TTM) was explored as a potential therapeutic option for C9orf72-ALS/FTD. Results Here, we describe a pure RAN translation zebrafish model of C9orf72-ALS/FTD that exhibits significant RAN-translated DPR pathology and progressive motor decline. We further demonstrate that hypothermic-TTM results in a profound reduction in DPR species in C9orf72-ALS/FTD cell models as well as embryonic C9orf72-ALS/FTD zebrafish. Interpretation The transgenic model detailed in this paper provides a medium throughput in vivo research tool to further investigate the role of RAN-translation in C9orf72-ALS/FTD and further understand the mechanisms that underpin neuroprotective strategies. Hypothermic-TTM presents a viable therapeutic avenue to explore in the context of C9orf72-ALS/FTD. ANN NEUROL 202

    Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    Get PDF
    International audienceThe hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research. The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwindof the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements. Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on ozone was through the temperature dependence of the biogenic emissions, closely followed by the effect of reduced dry deposiion caused by closing of the plants' stomata at very high temperatures. The impact of high temperatures on the ozone chemistry was much lower. The results suggest that forest fire emissions, and the temperature effect on biogenic emissions and dry deposition, will potentially lead to substantial ozone increases in a warmer climate

    HST hot-Jupiter transmission spectral survey: Evidence for aerosols and lack of TiO in the atmosphere of WASP-12b

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present Hubble Space Telescope (HST) optical transmission spectra of the transiting hot-Jupiter WASP-12b, taken with the Space Telescope Imaging Spectrograph instrument. The resulting spectra cover the range 2900–10 300 Å which we combined with archival Wide Field Camera 3 spectra and Spitzer photometry to cover the full optical to infrared wavelength regions. With high spatial resolution, we are able to resolve WASP-12A's stellar companion in both our images and spectra, revealing that the companion is in fact a close binary M0V pair, with the three stars forming a triple-star configuration. We derive refined physical parameters of the WASP-12 system, including the orbital ephemeris, finding the exoplanet's density is ∌20 per cent lower than previously estimated. From the transmission spectra, we are able to decisively rule out prominent absorption by TiO in the exoplanet's atmosphere, as there are no signs of the molecule's characteristic broad features nor individual bandheads. Strong pressure-broadened Na and K absorption signatures are also excluded, as are significant metal-hydride features. We compare our combined broad-band spectrum to a wide variety of existing aerosol-free atmospheric models, though none are satisfactory fits. However, we do find that the full transmission spectrum can be described by models which include significant opacity from aerosols: including Rayleigh scattering, Mie scattering, tholin haze and settling dust profiles. The transmission spectrum follows an effective extinction cross-section with a power law of index α, with the slope of the transmission spectrum constraining the quantity αT = −3528 ± 660 K, where T is the atmospheric temperature. Rayleigh scattering (α = −4) is among the best-fitting models, though requires low terminator temperatures near 900 K. Sub-micron size aerosol particles can provide equally good fits to the entire transmission spectrum for a wide range of temperatures, and we explore corundum as a plausible dust aerosol. The presence of atmospheric aerosols also helps to explain the modestly bright albedo implied by Spitzer observations, as well as the near blackbody nature of the emission spectrum. Ti-bearing condensates on the cooler night-side is the most natural explanation for the overall lack of TiO signatures in WASP-12b, indicating the day/night cold trap is an important effect for very hot Jupiters. These findings indicate that aerosols can play a significant atmospheric role for the entire wide range of hot-Jupiter atmospheres, potentially affecting their overall spectrum and energy balance.NASA, through grants under the HST-GO-12473 programme from the STScISTFC (Science & Technology Facilities Council)French Agence Nationale de la Recherche (ANR), under programme ANR-12-BS05-0012 ‘Exo-Atmos

    Animal models of multiple sclerosis: From rodents to zebrafish

    No full text
    Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease of the central nervous system. Animal models of MS have been critical for elucidating MS pathological mechanisms and how they may be targeted for therapeutic intervention. Here we review the most commonly used animal models of MS. Although these animal models cannot fully replicate the MS disease course, a number of models have been developed to recapitulate certain stages. Experimental autoimmune encephalomyelitis (EAE) has been used to explore neuroinflammatory mechanisms and toxin-induced demyelinating models to further our understanding of oligodendrocyte biology, demyelination and remyelination. Zebrafish models of MS are emerging as a useful research tool to validate potential therapeutic candidates due to their rapid development and amenability to genetic manipulation

    The comparative role of key environmental factors in determining savanna productivity and carbon fluxes: a review, with special reference to northern Australia

    Get PDF
    Terrestrial ecosystems are highly responsive to their local environments and, as such, the rate of carbon uptake both in shorter and longer timescales and different spatial scales depends on local environmental drivers. For savannas, the key environmental drivers controlling vegetation productivity are water and nutrient availability, vapour pressure deficit (VPD), solar radiation and fire. Changes in these environmental factors can modify the carbon balance of these ecosystems. Therefore, understanding the environmental drivers responsible for the patterns (temporal and spatial) and processes (photosynthesis and respiration) has become a central goal in terrestrial carbon cycle studies. Here we have reviewed the various environmental controls on the spatial and temporal patterns on savanna carbon fluxes in northern Australia. Such studies are critical in predicting the impacts of future climate change on savanna productivity and carbon storage
    corecore