1 research outputs found

    Titan's Prolific Propane: The Cassini CIRS Perspective

    Full text link
    In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperfect model of the n6 band of ethane. This study clearly shows for the first time the ubiquity of propane's emission bands across the thermal infrared spectrum of Titan, and points to an urgent need for further laboratory spectroscopy work, both to provide the line positions and intensities needed to model these bands, and also to further characterize haze spectral opacity. The present lack of accurate modeling capability for propane is an impediment not only for the measurement of propane itself, but also for the search for the emissions of new molecules in many spectral regions.Comment: 7 Figures, 3 Tables. Typeset in Latex with elsart.cls. In press for Planetary and Space Scienc
    corecore