244 research outputs found
Constraints on the SU(3) Electroweak Model
We consider a recent proposal by Dimopoulos and Kaplan to embed the
electroweak SU(2)_L X U(1)_Y into a larger group SU(3)_W X SU(2) X U(1) at a
scale above a TeV. This idea is motivated by the prediction for the weak mixing
angle sin^2 theta_W = 1/4, which naturally appears in these models so long as
the gauge couplings of the high energy SU(2) and U(1) groups are moderately
large. The extended gauge dynamics results in new effective operators that
contribute to four-fermion interactions and Z pole observables. We calculate
the corrections to these electroweak precision observables and carry out a
global fit of the new physics to the data. For SU(2) and U(1) gauge couplings
larger than 1, we find that the 95% C.L. lower bound on the matching (heavy
gauge boson mass) scale is 11 TeV. We comment on the fine-tuning of the high
energy gauge couplings needed to allow matching scales above our bounds. The
remnants of SU(3)_W breaking include multi-TeV SU(2)_L doublets with electric
charge (+-2,+-1). The lightest charged gauge boson is stable, leading to
cosmological difficulties.Comment: 17 pages, LaTeX, 4 figures embedded, uses JHEP.cl
Review of Speculative "Disaster Scenarios" at RHIC
We discuss speculative disaster scenarios inspired by hypothetical new
fundamental processes that might occur in high energy relativistic heavy ion
collisions. We estimate the parameters relevant to black hole production; we
find that they are absurdly small. We show that other accelerator and
(especially) cosmic ray environments have already provided far more auspicious
opportunities for transition to a new vacuum state, so that existing
observations provide stringent bounds. We discuss in most detail the
possibility of producing a dangerous strangelet. We argue that four separate
requirements are necessary for this to occur: existence of large stable
strangelets, metastability of intermediate size strangelets, negative charge
for strangelets along the stability line, and production of intermediate size
strangelets in the heavy ion environment. We discuss both theoretical and
experimental reasons why each of these appears unlikely; in particular, we know
of no plausible suggestion for why the third or especially the fourth might be
true. Given minimal physical assumptions the continued existence of the Moon,
in the form we know it, despite billions of years of cosmic ray exposure,
provides powerful empirical evidence against the possibility of dangerous
strangelet production.Comment: 28 pages, REVTeX; minor revisions for publication (Reviews of Modern
Physics, ca. Oct. 2000); email to [email protected]
Hadron yields and spectra in Au+Au collisions at the AGS
Inclusive double differential multiplicities and rapidity density
distributions of hadrons are presented for 10.8 A GeV/c Au+Au collisions as
measured at the AGS by the E877 collaboration. The results indicate that large
amounts of stopping and collective transverse flow effects are present. The
data are also compared to the results from the lighter Si+Al system.Comment: 12 pages, latex, 10 figures, submitted to Nuclear Physics A (Quark
Matter 1996 Proceedings
Measurement of Pion Enhancement at Low Transverse Momentum and of the Delta-Resonance Abundance in Si-Nucleus Collisions at AGS Energy
We present measurements of the pion transverse momentum (p_t) spectra in
central Si-nucleus collisions in the rapidity range 2.0<y<5.0 for p_t down to
and including p_t=0. The data exhibit an enhanced pion yield at low p_t
compared to what is expected for a purely thermal spectral shape. This
enhancement is used to determine the Delta-resonance abundance at freeze-out.
The results are consistent with a direct measurement of the Delta-resonance
yield by reconstruction of proton-pion pairs and imply a temperature of the
system at freeze-out close to 140 MeV.Comment: 12 pages + 4 figures (uuencoded at end-of-file
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
Event Reconstruction in the PHENIX Central Arm Spectrometers
The central arm spectrometers for the PHENIX experiment at the Relativistic
Heavy Ion Collider have been designed for the optimization of particle
identification in relativistic heavy ion collisions. The spectrometers present
a challenging environment for event reconstruction due to a very high track
multiplicity in a complicated, focusing, magnetic field. In order to meet this
challenge, nine distinct detector types are integrated for charged particle
tracking, momentum reconstruction, and particle identification. The techniques
which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure
Neutralino Dark Matter, b-tau Yukawa Unification and Non-Universal Sfermion Masses
We study the implications of minimal non-Universal Boundary Conditions in the
sfermion Soft SUSY Breaking (SSB) masses of mSUGRA. We impose asymptotic b-tau
Yukawa coupling Unification and we resort to a parameterization of the
deviation from Universality in the SSB motivated by the multiplet structure of
SU(5) GUT. A set of cosmo-phenomenological constraints, including the recent
results from WMAP, determines the allowed parameter space of the models under
consideration. We highlight a new coannihilation corridor where
neutralino-sbottom and neutralino-tau sneutrino-stau coannihilations
significantly contribute to the reduction of the neutralino relic density.Comment: 38 pages, 27 Figures, Latex; Version accepted for publication in PR
A Reaction Plane Detector for PHENIX at RHIC
A plastic scintillator paddle detector with embedded fiber light guides and
photomultiplier tube readout, referred to as the Reaction Plane Detector
(RXNP), was designed and installed in the PHENIX experiment prior to the 2007
run of the Relativistic Heavy Ion Collider (RHIC). The RXNP's design is
optimized to accurately measure the reaction plane (RP) angle of heavy-ion
collisions, where, for mid-central = 200 GeV Au+Au collisions,
it achieved a harmonic RP resolution of 0.75, which is a factor
of 2 greater than PHENIX's previous capabilities. This improvement was
accomplished by locating the RXNP in the central region of the PHENIX
experiment, where, due to its large coverage in pseudorapidity
() and (2), it is exposed to the high particle
multiplicities needed for an accurate RP measurement. To enhance the observed
signal, a 2-cm Pb converter is located between the nominal collision region and
the scintillator paddles, allowing neutral particles produced in the heavy-ion
collisions to contribute to the signal through conversion electrons. This paper
discusses the design, operation and performance of the RXNP during the 2007
RHIC run.Comment: 28 authors from 10 institutions, 24 pages, 16 figures and 3 tables.
Published in Nuclear Instruments and Methods in Physics Research Section
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
- …